2024年3的倍数的特征教学反思(实用19篇)
总结是一种思考和梳理的过程,通过它我们能够更好地认识自己。总结要简明扼要,不要重复和啰嗦。可以帮助我们发现总结的写作技巧和方法。
3的倍数的特征教学反思篇一
《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
因而在《3的倍数的特征》的开始,我先复习了2、5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知冲突产生疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。
为了验证这一猜想,我补充了一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。
为了使学生更好地掌握3的倍数的特征,进行课堂练习时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。
利用2、5、3的倍数的特征来判断一个数是不是2、5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练习进行巩固。
这节课结束后,我感到自主学习和合作探究是这节课中最重要的两种学习方式,学生通过自主选择研究内容,举例验证等独立思考和小组讨论,相互质疑等合作探究活动,获得了数学知识。学生的学习能动性和潜在能力得到了激发。在自主探索的过程中,学生体验到了学习成功的愉悦,同时也促进了自身的发展。但最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化。
3的倍数的特征教学反思篇二
这一周我和学生一起学习了《2、5的倍数的特征》这一课,教学时通过游戏的情境很好地激发学生的求知欲,探究新知的热情,学生借助“百数表”分别直观地找出2和5的倍数,通过合作和独立思考的方式概括出2和5的倍数特征,再举例比100大的'数加以验证,以“猜想——验证——结论”的学习方式符合学生的认知特点,结合2的倍数特征,进而让学生认识、理解奇数和偶数含义,再通过游戏获得‘既是2又是5的倍数特征’让学生应用所学的知识解决数学简单的生活问题,达到了教学目标。
学生在学习中,体验了探索的成功乐趣,也对数学产生的兴趣。对学习3的倍数打下了基础。当然本节课的教学不失为一堂指导学生进行探究性学习的课,但我总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些不够。在以后的教学中应力争避免此种情况的发生也有一部分学生容易混淆倍数的特征。这还有需要我们进一步的学习巩固中改变。我相信只要有信心,有方法,什么困难我们都能克服的。
3的倍数的特征教学反思篇三
(与第一次教学情况基本相同,有些学生能够正确地判断一个数是不是3的倍数,这时一些学生却依然感到困惑,我设法将这一困惑激发出来。)。
生:只和一个数的个位有关。
师:与今天学习的知识比较一下,你有什么疑问吗?
生1:为什么判断一个数是不是3的倍数只看个位不行?
……。
师:同学们思考问题确实比较深入,提出了非常有研究价值的问题。那我们先来研究一下2、5的倍数为什么只和它的个位有关。
(学生尝试探索,教师适时引导学生从简单数开始研究,借助小棒或其他方法进行解释。)。
生1:我在摆小棒时发现,十位上摆几就是几十,它肯定是2、5的倍数,因此只要看个位摆几就可以了。
生2:其实不用摆小棒也可以,我们组发现每个数都可以拆成一个整十数加个位数,整十数当然都是2、5的倍数,所以这个数的个位是几就决定了它是否是2、5的倍数。
师:同学们想到用“拆数”的方法来研究,是个好办法。
生3:是否是3的倍数只看个位就不行了。比如13,虽然个位上是3的倍数,但10却不是3的倍数;12虽然个位不是3的倍数,但12=10+2=9+1+2=9+3,因此只要看十位上余下的数和个位上的数合起来是不是3的倍数就行了。
生4:我也是这样想的,我还发现十位上余下的数正好和十位上的数字一样。
生5:(面带困惑)起初,我也是这样想的,可是在试三十几、四十几时就不行了。余下的数和十位上的数不一样了,比如40除以3只余1,余下的数就和十位数字不同。
生(部分):对。
生4:其实40不要拆成39和1,你拆成36和4,余下的数不就和十位数字相同了吗?
生6:也就是说整十数都可以拆成十位上的数字和一个3的倍数的数。这样只要看十位上的数和个位上的和是不是3的倍数就可以了。
师:同学们确实很厉害!那三位数、四位数是不是也有这样的规律呢?
学生用“拆数”的方法继续研究三、四位数,发现和两位数一样,只不过千位、百位上余下的数要依次加到下一位上进行研究。3的倍数的特征在学生头脑中越来越清晰。
生1:我想知道4的倍数有什么特征?
生2:我知道,应该只要看末两位就行了,因为整百、整千数一定都是4的倍数。
师:你能把学到的方法及时应用,非常棒!
……。
师:同学们又提出了一些新的、非常有价值的问题,课后可以继续进行探索。
1.找准知识间的冲突,激发探究的愿望。学生刚刚学习了2、5的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2.激活学习中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学习中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学习中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学习中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。
3.沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学习由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。
3的倍数的特征教学反思篇四
好的开始等于成功了一半。课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。你们想知道是什么吗?”由此引出课题。这样大大的调动了学生学习的积极性,激发了其探究的欲望。
数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现“个位上是0或5的数是5的倍数。”而这只是猜测,结论还需要进一步的验证。我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1—100这个小范围。是不是在所有不等于0的自然数中都适用呢?还需要研究。在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
动手实践、合作交流是学生学习数学的重要方式。与5的倍数特征相比较,2的倍数特征稍显困难,所以我组织学生利用小组合作的方式,根据探究5的倍数的特征的思路,小组合作探究2的倍数的特征。经过这样的合作讨论,大多数小组能够得到正确或接近正确的答案。突出了学生的主体地位,让他们在充分的探索活动中充分发现规律、举例验证、总结归纳。
课上完了,整体来说感觉良好。学生的主体作用在这节课中得到了充分的发挥,积极的思维、热烈的气氛等均给人以很大的感染,仔细分析,我认为这节课课的成功得益于以下几方面:。
1.2.3.5倍数的特征,它们在知识体系中是一个整体,而在特征和判断方法上有各自不同,这使得学生的学习过程始终处在“产生冲突解决冲突”的过程中,为学生的积极探索提供了较大的空间,也为每个学生在不同水平上参与学习提供了可能。例如,在探索能被3整除的数的特征时,有的学生提出“个位上是3的倍数”有的学生提出“某一位上的数是3的倍数”;而水平较高的学生提出:“各个数位上的数字之和是3的倍数”。在这样一个探索过程中学生的主动性和创造性得到了发挥。这是我认为比较成功的地方。
3的倍数的特征教学反思篇五
《3 的倍数的特征》本节课的教学活动,注重学生实践操作,展开探究活动,组织学生进行交流和探讨,注重培养学生发现问题,解决问题的能力,让学生经历科学探索的过程,感受数学的严谨性和数学结论的正确性。我是从教学环节维度进行观课的,本节课有五个环节包括:一、复习旧知,直接导入。二、自主探究,合作验证。三、总结提升,共同验证。四、运用结论,巩固训练。五、全课小结,课后延伸。每个环节环环相扣,设计合理。下面就说一下自己的想法。
赵老师先复习了2、5的倍数的特征,为这节课的学习打下了基础。赵老师以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。
本节课教师努力尝试构建数学生态课堂,让学生继续利用小棒摆一摆,进而发现不止是3根、6根小棒能摆出3的倍数,9根也能“只要小棒的根数是3的倍数,摆出来的数就是3的倍数。”教师将“动手摆小棒”升级为“脑中拨计数器”,将“直观性思维”升华为“理性思维”,通过小组交流、集体验证,学生的探索发现离“3的倍数的特征”只有咫尺之遥。整节课让学生经历“动手操作——观察发现——举例验证——归纳总结”的探究过程,实现课程、师生、知识等多层次的互动。
习题的设计力争在突出重点,突破难点,遵循学生认知规律的基础上,体现基础性、层次性、灵活性、生活性、趣味性。本节课教师设计了3道练习题。在巩固练习部分,第(1)、(2)题是基本题;第(3)题,教师努力拉近数学与生活的联系。把数学和生活有机联系起来,使学生体会到数学在现实生活中作用和价值,初步学会用数学的眼光去观察事物、思考问题,树立学好数学、用好数学的志趣。
在学生学习的过程中注意“学习方法”的指导,让学生感受到掌握方法才能举一反三,真正做到触类旁通。最后一个环节设计了让学生静静的回顾这节课的学习历程“动手操作——观察发现——举例验证——归纳总结”,使其在数学思想上做进一步的提升。
3的倍数的特征教学反思篇六
“能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:
本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。
教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。
学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。
3的倍数的特征教学反思篇七
虽然2、5、3的倍数的特征看起来很简单,探究的过程可能没有什么困难之处,但要内容让学生学懂,首先存在知识衔接问题,整除、倍数、因数这些概念学生都从未接触过,因此,我在课开始安排了整除、倍数、因数新概念的介绍,在我看来,这些概念比较抽象,学生一时难以掌握。
备课时也参考了不少资料,大多数教学设计都是将这一内容分成两节课来学习,一节学《2、5的倍数的特征》,一节学《3的倍数的特征》,我确定用一节课教学《2、5、3的倍数的特征》,其目的是为了体现容量大,我的设计内容多,相应的学生自学、展示、巩固练习的时间和机会就压缩的比较少了。而3的倍数的特征与2、5的又完全不同,学生接受起来可能会有一定的难度,最好单独作为一课时学习。最后的环节达标测试拖堂了。
高效课堂要充分发挥学生的主体作用,要体现学生会学,学会,在本节课上,学生合作学习的热情高,通过展示,发现学生学懂了,总结出了2、5、3的倍数的特征,在展示环节,学生讲的、板书的相互干扰,于是,我临时安排按先后顺序进行,没体现出高效课堂的“立体式”这一特点。
3的倍数的特征教学反思篇八
在教学中,当学生找到百数表内5的倍数特征时,我追问学生,“是不是在所有的自然数中,5的倍数都有这个特征呢?”学生异口同声地都认为是。这里就需要教师帮助学生养成严谨科学的学习态度。我告诉学生是不是有这个特征,我们没有研究过,只是我们的猜想。还需要我们进一步去验证。大部分学生还是比较认可的。没有经过研究,怎么能知道是呢?有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时我才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有验证后,猜想才可能变成结论。相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论。
这节课中,当学生研究出5的倍数的特征后,我引导学生来回忆。我们是怎样来研究5的倍数的特征的?让学生体验经历“找数——观察——猜想——百数表中验证——更大数验证——结论”这一研究过程,然后让学生独立去研究2的倍数的特征,再次体验2的倍数的特征研究过程,我想学生就有了更完整的体验。
整节课学生经历了“观察,动手,发现规律、验证规律、得出结论,运用规律”的过程。著名数学家波利亚说过:“学习任何知识的最佳途径是由学生自己去发现。因为这种发现,理解最深刻,也最容易掌握其中的`内在规律联系。”离开了学生的学习活动,学生的发展将是空中楼阁。通过活动落实教学任务,让学生用自己的思维方式去探究,自己去体验,能有效促进学生主体的发展。学生经历和感悟“观察,动手实践,发现规律、验证规律、得出结论”的学习过程比学到的数学知识更有价值。如果教学中能长期坚持运用这些学习方法,而且学生一旦形成自己自主的学习方式,那将是非常可贵的。
1.2和5倍数的特征,都在个位数,学生极易理解和掌握,奇数、偶数的概念,学生掌握也并不困难,所以这部分内容的学习从学生已有的知识经验出发,创设有助于学生自主学习、合作交流的情境,使学生经历观察、操作、归纳、类比、猜想、交流、反思等数学活动,获得基本的数学知识和技能,发展思维能力,激发学习的兴趣,增强学好数学的信心。出现疑难问题或意见不一时,通过小组或集体讨论解决,教师发挥引导的作用,消除学生的疑惑;关注学生的个体差异,使不同层次的学生在练习中获得不同的发展,体验成功的喜悦。
2.学习方法的指导非常必要,让学生感受数学是一门严谨的学科,数学研究的方法就在平时的学习中,并不神秘,为学生以后的数学研究打下良好的基础。
3的倍数的特征教学反思篇九
《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。
3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。
在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。
本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的.方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。
3的倍数的特征教学反思篇十
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的`意识和能力。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
这节课结束后,我感觉最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。
3的倍数的特征教学反思篇十一
3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究,本课注重引导学生经历探索的过程。上课开始先让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测:“各位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。
下面进入验证环节,先学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流这些数不一定都是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。于是进入到动手操作环节,在此基础上,利用计数器转移探索的方向,让学生用3颗算珠在计数器上任意摆数,得出结果:摆出的数都是3的倍数,到这里有几个学生显得很兴奋。随后用5颗算珠实验,发现摆出的数都不是3的倍数,到这里学生中已经有一些议论,他们都有了发现。为了让更多的学生看出其中的神奇,我将自主权交给了学生们,自己选择算珠的颗数进行了第三次实验,然后板书出每组的实验结果,从结果的数据中,学生们都很兴奋地发现了所用算珠的颗数是3颗,6颗,9颗,拨出的数都是3的倍数,每个数所用算珠的颗数,也是每个数各位上数的和。把算珠颗数抽象成各位上数的和,是理解3的倍数特征的关键。
“试一试”是教学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数。利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。可惜在这一点上,我很仓促地指着黑板上算珠颗数是4颗,5颗,7颗,8颗时,所摆出的数都不是3的倍数,直接告诉了学生,而没有让学生自己举出反例。随后设计了一系列习题,使学生得到巩固提高。
整节课只能说顺利地走了下来,对于教者我来说从中发现了自己教学上的不足之处,在今后的教学中,我将不断学习,及时总结,虚心请教,以进一步提高自己的教学业务水平。
3的身为一名到岗不久的老师,课堂教学是重要的工作之一,在写教学反思的时候可以反思自己的教学失误,那么什么样的教学反思才是好的呢?以下是小编收集整理的3的......
3的倍数的特征教学反思篇十二
在学习这个内容之前,学生已经学习了2、5的倍数的特征。但是3的倍数的特征与钱不同,2、5的倍数的特征是看个数上的数字,而3的倍数的特征不再是看个位上的数字,而是看各位上的数字之和。在学习了2、5的倍数的特征的.前提下来学习3的倍数的特征很容易会跟2、5的一样。根据这一初步的认识冲突,在课堂上我采取了以下教学措施。
与教学“2、5的倍数特征”类似,我要求学生课前做好充分的预习工作:在附页的方格纸上写出1-100的数,找出3的倍数并涂上颜色,并观察发现有什么特征,如下:
复习引入,设置悬念。
出示:用3,5,6数字卡片摆成符合要求的三位数依次出示:
摆成2的倍数(学生回答356536并说原因)。
摆成5的倍数(学生回答365635并说原因)。
【设计意图:回顾2,5的倍数的特征】。
摆成3的倍数(学生回答563,653,356,536并说原因:个位上是3、6;有学生提出质疑,产生冲突)。
问:个位上是3,6或9的数是不是3的倍数?
学生验证,发现这四个数都不是3的倍数。
问:3的倍数是不是看各位上的数呢它到底有什么特征?
合作探究。
在100以内的数中,任意选取几个3的倍数的数,小组合作完成表格:
3的倍数有。
各数位上,数的和。
和是不是3的倍数。
12。
1+2=3。
是
汇报交流:你发现了什么?
得出结论:一个数各数位上数的和是3的倍数,这个数就是3的倍数。例如:54,因为5+4=9,9是3的倍数,所以54是3的倍数。
1,基础练习:
(1)判断下列数是不是3的倍数(4213426878)。
学生回答:例。
42是3的倍数,134不是3的倍数,
因为4+2=6,6是3的倍数,因为1+3+4=8,8-不是3的倍数。
所以42是3的倍数。所以134不是3的倍数。
(2)师生互动猜数游戏:老师说一个数,学生判断是否为3的倍数;学生说一个数,老师判断;同桌判断,男女生判断。
(3)在下面的方框里填上一个数字,使这个数是3的倍数。
2,有关于2,5,3的倍数的特征的比较,综合练习。
本节课能从认识冲突上找到突破点,再小组合作通过填写表格引导学生去发现3的倍数的特征,学生能够清晰的区分和判别3的倍数,并与2、5的倍数作比较,真正理解和辨别这几个数的倍数的特征,学生的掌握情况还是不错的。
3的倍数的特征教学反思篇十三
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学习中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的`倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
3的倍数的特征教学反思篇十四
今天我教学了3的倍数的特征,我首先复习2、5的倍数的特征,然后我出示了几个不同的四位数,问生:谁能很快判断出哪些是3的倍数?想知道有什么窍门吗?这们引入课题很顺当,学生也很有兴趣。下面,我先让学生写出50以内3的倍数,再观察:3的倍数有什么特点?学生一时很难发现,仍从个位上的数去观察,但马上被其他同学否定,当时我心里有点担心怎么看不来呢?,我启发学生再看看个位和十位上的数,通过交流后,在部分学生马上发现把每个数的数字加起来的和除以3都是正好除的,我让学生用这个发现对书上第76页的表格100以内的数进行验证一下,学生验证后我又让学生从100以外的数来验证。从而得出了3的倍数的特征。再通过用1、2、6可以写成哪些三位数?这些三位数是3的倍数吗?由此有什么发现?让学生进一步明白3的倍数跟数字的位置没有关系,只跟各位上数的和有关系。这样学生在完成想想做做第5题时学生思考时就不会漏写了。最后,通过后面的练习,我觉得在教学某些知识时,最好老师不要轻易下结论,只有让他们自己在反复实践中自己得出结论,才能牢固地掌握知识。
3的倍数的特征教学反思篇十五
生:不能。那样的话永远也研究不了,自然数太多了,是无限的。
师:那怎么办呢?
(同桌讨论)。
生:我们可以先研究小范围里面的数。再推广。
师:他的想法真棒!那我们就先确定一个比较小的范围1-100,看看这100个数里2和5的倍数有哪些特征。
生:(凌乱地回答)是!
(同桌讨论)。
生:可以找一个数看一看。
师:找怎样的数呢?怎么看一看呢?谁能说得更明白呢?
生:就是找一个末尾是0或者5的数,然后除以5看看,能不能除得尽。
师:哦,如果找不到这样的数,那说明——在大范围里面也适合。
如果找得到这样的数,那就是有了反例,说明——在大范围里面不适合。
(学生在本子上举例)。
……。
师:我们举了大量的例子,没有找到反例。那现在我们可以得出怎样的结论了呢?
生:所有5的倍数,个位上的数字都是5或0。
师:谁能完整地说一说呢?在怎样的范围内呢?
生:在自然数中,个位上的数字是5或0,那这个数一定是5的倍数。
师:当然,我们研究的是不是0的自然数。
……(练习)。
(同桌讨论,教师巡视并启发)。
生1:我们先确定了一个范围。
师:为什么呢?
生1:因为不确定范围的话,数太多了,不可能研究得完。
生2:我们找到了这个范围内5的倍数特征后,就把范围扩大到所有不是0的自然数,进行了猜想。
生3:猜想后,我们又进行了验证。
师:我们是用怎样的方法进行验证的呢?
生4:举例。看看有没有反例。
师:说得真好,最后我们才得出了结论——在所有不是0的自然数中,5的倍数的特征是个位上5或0。然后运用这些结论能快速判断。
师:谁能完整地把这个研究过程说一说呢?(同桌说——全班说)。
……。
师:那2个倍数特征我们怎么研究呢?
生:也是先确定范围,寻找一定范围内的2的倍数特征。然后扩大范围,举例,寻找反例,最后得出结论。
师:那我们就用这样的研究方法,四人一小组开始研究2的倍数的特征。
……。
从以上的教学过程中,可以看到掌握2、5的倍数的特征不是本节课的唯一目标,在制定目标的时候,还从数学研究方法这个方面着手,在学生掌握知识的同时,更注重让学生了解科学的数学研究的过程。
我们知道,一堂课的知识目标是很容易达成的,但是如果要渗透数学思想方法或科学的研究方法,往往会给我们一线教师带来很多困难。在这节课中,教师引导学生通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果,并进行应用。
1、渗透“范围”意识。
当我们说要研究2、5的倍数的特征时,学生想当然地会认为只要一个数一个数地研究就可以了。如果让他们实际操作,他们很可能会写了几个数后,就下结论,当然这时候他们下的结论也很可能是正确的。大部分老师在这样的情况下,就会肯定学生的结论,然后进行练习巩固。
但是教师并没有满足于此,而是抱着科学严谨的态度。仅仅几个数就能得出结论了吗?答案显然是否定的,一项结论的得出不是这样草率的。如果教师如此这般教学,一次两次不要紧,长久以来,学生也会形成草率的态度,以偏概全,缺乏一种科学的严谨,这是很可怕的。
所以我们看到,首先教师引导学生确定了“小范围”的意识,在数据比较多的时候,我们可以先确定一个范围,在有限的时间里研究这个范围中的数的特征,得到在1-100这个范围内5的倍数的特征,个位上的数字是5或0。这时候教师没有满足于此,而是引导学生认识到这个结论仅仅适用于1-100这个小范围,是不是在所有不等于0的自然数中都使用呢?还需要研究。所以接下来在教师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。只有进行了研究,才能得到正确的结论,最后在学习和生活中进行应用。
在这一过程中,学生感受到了科学严谨的态度,同时有了一定的“范围”意识,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。相信长此以往,学生会逐渐明确范围意识,建立科学严谨的态度的。
2、感受“猜想”与“结论”的不同。
在教学2、5的倍数的特征之前,教师找了几个学生访谈,想了解学生学习的前在状态,当然所找的学生是各种层次都有的。对于2、5的倍数的特征,应该说比较简单,所以中等学生和优等生都已经知道了它们的特征——2的倍数肯定是双数,5的倍数末尾是5或0,只有个别学困生一无所知。同时有个奇怪的现象,所有知道这个结论的同学都认为这个结论非常正确,以后就能用这个结论来进行判断,不需要进行验证,当然他们的结论获得也仅仅是“知道”的过程,没有经历“探究”过程。如果长此以往,学生仅仅是知识的接受者,而不是知识的探究者,以后将只习惯于被动接受,而不会主动发现。
有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时教师才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有研究后,猜想才可能变成结论。
相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论,当然我们教师也要鼓励学生大胆猜想。
从这节课中,我们看到,当学生扩大范围,研究比100大的5的倍数的特征时,教师就引导可以用举例的方法来研究,寻找有没有不符合这一特征的例子,如果有,说明一开始的猜想是错误的;全班举了无数个例子,如果没有,那么在小学阶段,可以认为是正确的。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
随着时代的发展,随着新课改的不断深入,我们教师在制定教学目标时,不要再仅仅关注学生知识目标,更重要的是要关注学生的能力目标,只有从小培养,从小渗透,那么我们学生对数学的认识才会更深刻,也才会在数学上有更大的造诣。
3的倍数的特征教学反思篇十六
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。
新的课程理念要求我们在教学中尽可能地为学生提供一个自主、合作、探究机会,其宗旨也就在于培养学生在实际的学习活动中,善于发现问题和提出问题的能力,灵活运用知识去解决问题的能力,在研究和解决问题的过程中学会合作。3的倍数的特征,有规律可循,容易上成机械刻板、枯燥无味的课,学生虽能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计采用了启发与发现相结合的教学方法,激励学生大胆猜想,动手实践,去发现规律,形成技能,升华至应用于生活。
2、5的倍数特征一样,看一个数的末尾了,引导学生是不是要看这个数其它的数位上的数呢?学生发现也不是很难。教材中有提示,学生回家预习后也会清楚叙述出3的倍数特征是一个数各个数位上数字相加的和。找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
这节课结束后,我感觉最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。
3的倍数的特征教学反思篇十七
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的'倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。
3的倍数的特征教学反思篇十八
这节课新授知识较为简单,很适合让学生预习。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:1、观察5的倍数,想想这些数有什么特征?2、观察2的倍数,又有什么特征呢?一上课就小组交流这两个问题,同学们兴致高涨,足以看出预习效果是很好的。通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同学运用知识的能力欠佳,比如:写出5个奇数是这样写的:5、15、25、35、45.虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。
在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。
1、组成的数是偶数的有()。
2、组成的数是5的倍数的有()。
3、组成的数既是2的倍数、又是5的倍数的有()。
这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。
3的倍数的特征教学反思篇十九
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。