六年级奥数题及答案题解析(精选16篇)
通过总结,我们可以发现自己的优势和不足,为未来的发展提供参考。写总结时要把握好时态,既要回顾过去,也要展望未来。请大家根据自己的需要和实际情况选择适合自己的范文进行参考和学习。
六年级奥数题及答案题解析篇一
注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的.流量就是工作量,单位时间内水的流量就是工作效率。
要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。
只要设某一个量为单位1,其余两个量便可由条件推出。
每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1。
即一个排水管与每个进水管的工作效率相同。由此可知。
一池水的总工作量为1×4×5-1×5=15。
又因为在2小时内,每个进水管的注水量为1×2,
所以,2小时内注满一池水。
至少需要多少个进水管?(15+1×2)÷(1×2)=8.5≈9(个)。
答:至少需要9个进水管。
六年级奥数题及答案题解析篇二
亲爱的小朋友们,小学频道为你准备了六年级奥数题及答案:奇偶性应用(中等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!
桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。
扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。
亲爱的小朋友们,小学频道为你准备了六年级奥数题及答案:逻辑推理(高等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!
数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。
六年级奥数题及答案题解析篇三
原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土方。
答案:
方法二:假设每人每天挖x方,完成任务的天数为y天,那么共有24xy方土需要挖,5天内挖了24×5x方土,5天后剩下24x(y-5)方土没挖,这时只有24-6=18人了,则有24x(y-5)=18(x+1)×(y-5),解此不定方程即可。
解:方法一:调走人后每人每天多干原来的几分之几:24÷(24-6)-1=1/3,
原计划每人每天挖土的方数:1÷(1/3)=3(方)。
所以24x(y-5)=18(x+1)×(y-5),
根据题意得出y必须大于5,
所以24x=18x+18。
6x=18。
x=3。
答:原计划每人每天挖土3方,故答案为3。
六年级奥数题及答案题解析篇四
据研究表明,奥数只适合少数对数学有兴趣、有特长、有天分的学生,只有大约5%的智力超常儿童适合学习奥数。下面是六年级奥数题及答案,为大家提供参考。
六年级。
1.每个学生的基础分为奇数,无论题目的答题情况,每一题都将是总分加上或减去一个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学生的总分肯定是奇数,而学生有2013名,奇数和奇数的和还是奇数,所以所有学生的分数一定是奇数。
2.正方体一个面的面积是144÷4=36平方厘米,根据长方体的表面积可得:
36×(4n+2)=3096。
144n+72=3096。
n=21。
答:n是21。
六年级奥数题及答案题解析篇五
张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的价格把房子卖出.这样他一共获利10.5万元.这套房子原标价()万元.
分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利10.5万元,得出10.5万元对应的'百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.
解答:解:10.5÷(1+30%-95%),
=10.5÷35%,
=30(万元),
答:这套房子原标价30万元;。
故答案为:30.
点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出10.5对应的百分数,列式解答即可.
文档为doc格式。
六年级奥数题及答案题解析篇六
答案与解析:610不是3的倍数,所以61034也不是3的倍数。因此这个数不能整除24。
610÷24=25……10。
6102÷24余4。
6103÷24余16。
6104÷24余16。
……。
以后余数都是16,所以61034除以24余16。
1、直观画图法:解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。
3、枚举法:奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。
4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。
5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。
6、整体把握:有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。
六年级奥数题及答案题解析篇七
考点:列方程解含有两个未知数的应用题;差倍问题。
专题:和倍问题;列方程解应用题。
分析:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.
解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:
10x﹣x=288,
9x=288,
x=32;。
则桌子的价格是:32×10=320(元),
答:一张桌子320元,一把椅子32元.
点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元。
六年级奥数题及答案题解析篇八
解答:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.
又因为42=14×3,故可将42:13+14+15,一共有3个加数;。
又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.
所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子。
六年级奥数题及答案题解析篇九
请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的.数字,是你所选出的那些数中当中的一个。为了达到这些目的。
(1)请你说明:11这个数必须选出来;。
(2)请你说明:37和73这两个数当中至少要选出一个;。
(3)你能选出55个数满足要求吗?
答案与解析:(1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。
(2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来。
(3),同37的例子,
01和10必选其一,02和20必选其一,……09和90必选其一,选出9个。
12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。
六年级奥数题及答案题解析篇十
考点:整数、小数复合应用题。
专题:简单应用题和一般复合应用题。
解答:解:45+5×3。
=45+15。
=60(千克)。
答:3箱梨重60千克。
点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。
六年级奥数题及答案题解析篇十一
【口诀】:
和加上差,越加越大;。
除以2,便是大的;。
和减去差,越减越小;。
除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
已知整体求部分。
【口诀】:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;。
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
【口诀】。
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,
乘以各自的倍数,
两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,
所以甲数为:4x7=28,乙数为:4x4=16。
【口诀】:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36,有脚120,求鸡兔数。
(1)加水稀释。
【口诀】:
加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
加水先求糖,原来含糖为:20x15%=3(千克)。
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)。
(2)加糖浓化。
【口诀】:
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:20x(1-15%)=17(千克)。
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)。
(1)相遇问题。
【口诀】:
相遇那一刻,路程全走过。
除以速度和,就把时间得。
相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)。
(2)追及问题。
【口诀】:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,
时间就求对。
先走的路程,为3x2=6(千米)。
速度的差,为6-3=3(千米/小时)。
所以追上的时间为:6/3=2(小时)。
【口诀】:
全盈全亏,大的减去小的;。
一盈一亏,盈亏加在一起。
除以分配的.差,
结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
一盈一亏:则公式为:(9+7)/(10-8)=8(人),相应桃子为8x10-9=71(个)。
例3:学生发书。每人10本则差90本;每人8本则差8本,多少学生多少书?
【口诀】:
每牛每天的吃草量假设是份数1,
a头b天的吃草量算出是几?
m头n天的吃草量又是几?
来自 kAoyAnmiji.com
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是a头b天的吃草量减去b天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;。
有的草量除以剩余的牛数就将需要的天数求知。
结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);。
原有的草量依此反推。
公式就是a头b天的吃草量减去b天乘以草的生长速率。
所以原有的草量=27x6-6x15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;。
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;。
所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)。
【口诀】:
岁差不会变,同时相加减,
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13x3=39岁,小军的年龄是13x1=13岁,所以应该是5年后。
岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
六年级奥数题及答案题解析篇十二
张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的价格把房子卖出.这样他一共获利10.5万元.这套房子原标价万元.
分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利10.5万元,得出10.5万元对应的'百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.
解答:解:10.5÷(1+30%-95%),
=10.5÷35%,
=30(万元),
答:这套房子原标价30万元;。
故答案为:30.
点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出10.5对应的百分数,列式解答即可.
六年级奥数题及答案题解析篇十三
原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的.30.2%,那么第二次降价后的价格是原来定价的百分之几?(b级)。
要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。
解:设第二次降价是按x%的利润定价的。
38%×40%+x%×(1-40%)=30.2%。
x%=25%。
(1+25%)÷(1+100%)=62.5%。
答:第二次降价后的价格是原来价格的62.5%。
六年级奥数题及答案题解析篇十四
答案与解析:(1)最佳修理顺序为先处理修复时间最短的车床,依次为3分钟、8分钟、9分钟、15分钟、29分钟,按此顺序,停产时间最少:3*5+8*4+9*3+15*2+29*1=133(分钟)最低经济损失:133*10=1330(元)。
(2)如果有两名修理工,一名修理工按3分钟,9分钟,29分钟,修理顺序,另一名修理工按8分钟,15分钟,顺序修理。
最少停产时间3*3+(8+9)*2+(15+29)*1=87(分钟)。
最低经济损失:10*87=870(元)。
六年级奥数题及答案题解析篇十五
答案:350分。
分析:当钱数一定,要想买的最多,就要采取最划算的策略:每9个7分钱,首先要考虑50和500中可以分成多少份9个。然后看它们各自的余数是不是5的倍数,如果是,就按每5个4分钱累计,如果还有余数,才考虑每1个1分钱。按此方法,可以把小李和小赵两人各有多少钱计算出来。
详解:因为50÷9=5……5,所以小赵有钱。
5×7+4=39(分)。
又因为500÷9=55……5,所以小李有钱。
55×7+4=389(分)。
因此小李的钱比小赵多。
六年级奥数题及答案题解析篇十六
答案与解析:
顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)。
无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12.5(秒)。
答案与解析:
假设ab两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时).
答案与解析:
本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10)÷9=123……6,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校)。