2023年反比例函数的应用教学目标(5篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
反比例函数的应用教学目标篇一
3.反比例函数的应用
河南省郑州外国语中学 程世喜
一、学生知识状况分析
这节内容是在学生已经接受了反比例函数解析式、图象及性质之后的“反比例函数的应用”。用函数观点处理实际问题,体现了数形结合的思想方法,同时对函数的三种表示方法进行整合,初步形成对函数概念的整体性认识。
二、教学任务分析
教学目标:
(一)教学知识点
1、经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
(二)能力训练要求
1、激发学生在已有知识的基础上,进一步探索新知识的欲望。
2、在探索过程中培养和发展学生学习数学的主动性,提高应用数学的能力。(三)情感与价值观要求
1、调动学生参与数学活动的积极性,体验数学活动充满着探索性和创造性。
2、培养学生在学习过程中良好的情感态度,主动参与、合作、交流的意识,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。
教学重点 建立反比例函数的模型,进而解决实际问题。
教学难点 经历探索的过程,培养学生学习数学的主动性和解决问题的能力。
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习回顾;第二环节:情境导入;第三环节:应用与拓展;第四环节:随堂练习;第五环节:知识小结;第六环节:作业布置。
第一环节 复习回顾
活动目的:以提问的方式引导学生复习反比例函数的图象与性质
活动过程:反比例函数:当k>0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
当k<0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
第二环节 情境导入
活动目的: 多媒体给出情境材料,引起学生的兴趣,体现数学的现实性。活动过程:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木 板,构筑成一条临时通道,从而顺利完成了任务的情境。你能解释他 们这样做的道理吗?(见书p143)
(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?(2)当木板面积为0.2 m2 时,压强是多少
(3)如果要求压强不超过6000pa,木板面积至少要多大(4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
活动效果及注意事项:在(4)中,要启发学生思考:为什么只需在第一象限作函数图象?此外,还要注意单位长度所表示的数值。在(5)中,要留有充分时间让学生交流,领会实际问题的数学意义,体会数与形的统一。
第三环节 应用与拓展
活动目的:让学生利用图形上所提供的信息,正确写出反比例函数解析式;并通过综合运用表格,图象及关系式,形成对反比例函数较完整的认识
活动过程:做一做 1.蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间 的函数关系如图所示。(书上p144)(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10a,那么用电器的可变电阻应控制在什么范围内?
2.如图,正比例函数y=k1x的图象与反比例函数k2y=x的图象相交于a,b两点,其中点a的坐标为(3,23).(1)分别写出这两个函数的表达式:
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流.活动效果及注意事项:在这个活动中,逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用。
第四环节 随堂练习
活动目的:用函数观点来处理实际问题的应用,加深对函数的认识。活动过程:练习
1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空。(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与q之间的关系;
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水 3 全部排空?
第五环节 知识小结
活动目的:通过老师小结,带领学生回顾反思本节课对知识的研究探索过程,提炼数学思想,掌握数学知识。
活动过程:今天这节课学习了什么?你掌握了什么?
生:这节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题今天学习了反比例函数的应用,讲了四个类型:
1.压力与压强、受力面积的关系 2.电压、电流与电阻的关系
3.已知点的坐标求相关的函数表达式
第六环节 作业布置
课本146页习题5.4 1,2
四、教学反思
本节课采用引导、启发及问题讨论相结合的教学方式,引导学生从已有的知识和生活经验出发,师生共同探究解决新问题的途径和方法。这一过程中,充分发挥教师的主导作用,学生的主体作用,教材的主源作用,旧知识的迁移作用,学生之间的相互作用,从而师生得到共同发展。
反比例函数的应用教学目标篇二
第五章 反比例函数
3.反比例函数的应用
兴隆中学 贺吉祥
一、学生知识状况分析
这节内容是在学生已经接受了反比例函数解析式、图象及性质之后的“反比例函数的应用”。用函数观点处理实际问题,体现了数形结合的思想方法,同时对函数的三种表示方法进行整合,初步形成对函数概念的整体性认识。
二、教学任务分析
教学目标:
(一)教学知识点
1、经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
(二)能力训练要求
1、激发学生在已有知识的基础上,进一步探索新知识的欲望。
2、在探索过程中培养和发展学生学习数学的主动性,提高应用数学的能力。(三)情感与价值观要求
1、调动学生参与数学活动的积极性,体验数学活动充满着探索性和创造性。
2、培养学生在学习过程中良好的情感态度,主动参与、合作、交流的意识,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。
教学重点 建立反比例函数的模型,进而解决实际问题。
教学难点 经历探索的过程,培养学生学习数学的主动性和解决问题的能力。
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习回顾;第二环节:情境导入;第三环节:应用与拓展;第四环节:随堂练习;第五环节:知识小结;第六环节:作业布置。
第一环节 复习回顾
活动目的:以提问的方式引导学生复习反比例函数的图象与性质
活动过程:反比例函数:当k>0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
当k<0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
第二环节 情境导入
活动目的: 多媒体给出情境材料,引起学生的兴趣,体现数学的现实性。活动过程:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木 板,构筑成一条临时通道,从而顺利完成了任务的情境。你能解释他 们这样做的道理吗?(见书p143)
(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?(2)当木板面积为0.2 m2 时,压强是多少
(3)如果要求压强不超过6000pa,木板面积至少要多大(4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
活动效果及注意事项:在(4)中,要启发学生思考:为什么只需在第一象限作函数图象?此外,还要注意单位长度所表示的数值。在(5)中,要留有充分时间让学生交流,领会实际问题的数学意义,体会数与形的统一。
第三环节 应用与拓展
活动目的:让学生利用图形上所提供的信息,正确写出反比例函数解析式;并通过综合运用表格,图象及关系式,形成对反比例函数较完整的认识
活动过程:做一做 1.蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间 的函数关系如图所示。(书上p144)(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10a,那么用电器的可变电阻应控制在什么范围内?
2.如图,正比例函数y=k1x的图象与反比例函数k2y=x的图象相交于a,b两点,其中点a的坐标为(3,23).(1)分别写出这两个函数的表达式:
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流.活动效果及注意事项:在这个活动中,逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用。
第四环节 随堂练习
活动目的:用函数观点来处理实际问题的应用,加深对函数的认识。活动过程:练习
1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空。(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与q之间的关系;
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水 3 全部排空?
2.1、若一次函数y=kx+b与反比例函数y=m/x 交于点a(-1,2)、b(2,-1)两点。
(1)试求出两个函数的表达式;(2)求△aob的面积。
2、如图,已知点(m,5)是反比例函数 y=k/x 的图象上的一点,pa⊥x轴于a,pb⊥y轴于b,且矩形oapb的面积是20。(1)你能求出m的值吗?
(2)若点(a,b)也在这支双曲线图象上,且a+b=12,请你求出a,b的值 第五环节 知识小结
活动目的:通过老师小结,带领学生回顾反思本节课对知识的研究探索过程,提炼数学思想,掌握数学知识。
活动过程:今天这节课学习了什么?你掌握了什么?
生:这节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题今天学习了反比例函数的应用,讲了四个类型:
1.压力与压强、受力面积的关系 2.电压、电流与电阻的关系
3.已知点的坐标求相关的函数表达式
第六环节 作业布置
课本146页习题5.4 1,2
四、教学反思
本节课采用引导、启发及问题讨论相结合的教学方式,引导学生从已有的知识和生活经验出发,师生共同探究解决新问题的途径和方法。这一过程中,充分发挥教师的主导作用,学生的主体作用,教材的主源作用,旧知识的迁移作用,学生之间的相互作用,从而师生得到共同发展。
反比例函数的应用教学目标篇三
《反比例函数的应用》教学设计
宁夏海原县三河中学(黒城中学)邓永明 755200
一、教学目标
(一)教学知识点
1、经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
(二)能力训练要求
1、激发学生在已有知识的基础上,进一步探索新知识的欲望。
2、在探索过程中培养和发展学生学习数学的主动性,提高应用数学的能力。(三)情感与价值观要求
1、调动学生参与数学活动的积极性,体验数学活动充满着探索性和创造性。
2、培养学生在学习过程中良好的情感态度,主动参与、合作、交流的意识,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。
教学重点 建立反比例函数的模型,进而解决实际问题。
教学难点 经历探索的过程,培养学生学习数学的主动性和解决问题的能力。
二、教学过程分析
第一环节 复习回顾
活动目的:以提问的方式引导学生复习反比例函数的图象与性质
活动过程:反比例函数:当k>0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
当k<0时,两支曲线分别在,在每一象限内,y的值随x的增大而。第二环节 情境导入
活动目的: 多媒体给出情境材料,引起学生的兴趣,体现数学的现实性。活动过程:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。你能解释他们这样做的道理吗?(见书p143)
(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?(2)当木板面积为0.2 m2 时,压强是多少
(3)如果要求压强不超过6000pa,木板面积至少要多大(4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
活动效果及注意事项:在(4)中,要启发学生思考:为什么只需在第一象限作函数图象?此外,还要注意单位长度所表示的数值。在(5)中,要留有充分时间让学生交流,领会实际问题的数学意义,体会数与形的统一。第三环节 应用与拓展
活动目的:让学生利用图形上所提供的信息,正确写出反比例函数解析式;并通过综合运用表格,图象及关系式,形成对反比例函数较完整的认识
活动过程:做一做
1.蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间 的函数关系如图所示。(书上p144)(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10a,那么用电器的可变电阻应控制在什么范围内?
2.如图,正比例函数y=k1x的图象与反比例函数k2y=x的图象相交于a,b两点,其中点a的坐标为(3,23).(1)分别写出这两个函数的表达式:
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流.活动效果及注意事项:在这个活动中,逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用。第四环节 随堂练习
活动目的:用函数观点来处理实际问题的应用,加深对函数的认识。活动过程:练习
1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空。(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与q之间的关系;
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空? 第五环节 知识小结
活动目的:通过老师小结,带领学生回顾反思本节课对知识的研究探索过程,提炼数学思想,掌握数学知识。
活动过程:今天这节课学习了什么?你掌握了什么?
生:这节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题今天学习了反比例函数的应用,讲了四个类型:
1.压力与压强、受力面积的关系2.电压、电流与电阻的关系3.已知点的坐标求相关的函数表达式
第六环节 作业布置
课本146页习题5.4 1,2
三、教学反思
本节课采用引导、启发及问题讨论相结合的教学方式,引导学生从已有的知识和生活经验出发,师生共同探究解决新问题的途径和方法。这一过程中,充分发挥教师的主导作用,学生的主体作用,教材的主源作用,旧知识的迁移作用,学生之间的相互作用,从而师生得到共同发展。
反比例函数的应用教学目标篇四
17.1.2 反比例函数的图象和性质(2)教学设计 学习课题:17.1.2 反比例函数的图象和性质(2)
学习内容:教材p44-45 学习目标:
1、能用待定系数法求反比例函数的解析式.
2、能用反比例函数的定义和性质解决实际问题.
学习重点:反比例函数图象性质的应用.
学习难点:反比例函数图象图象特征的分析及应用。学习准备:
1、如何画反比例函数图象。
2、反比例函数有哪些性质。
学习过程:
一、探究研讨: 【活动1】老师在黑板上写了这样一道题:“已知点(2,5)在反比例函数y=
?的图象上,x•试判断点(-5,-2)是否也在此图象上.”题中的“?•”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目.
【活动2】已知反比例函数的图象经过点a(2,6)
(1)这个函数的图象分布在哪些象限?y随x的增大而如何变化?
(2)点b(3,4)、c(-
214,-4)和d(2,5)是否在这个函数的图象上? 2
5【活动3】如图是反比例函数y=(m-5)/x的图象的一支。根据图象回答下列问题:(1)图象的另分布在哪些象限?常数m的取值范围是什么?
(2)在函数的图象的某一支上任取点a(a,b)和点b(,b′)。如果a﹥a′,那么
b和b′有怎样的大小关系?
二、巩固练习:
1、p45-
1、2
2、判断下列说法是否正确
(1)反比例函数图象的每个分支只能无限接近x轴和y轴,•但永远也不可能到达x 轴或y轴.()3中,由于3>0,所以y一定随x的增大而减小.()x
2(3)已知点a(-3,a)、b(-2,b)、c(4,c)均在y=-的图象上,则a
x
(2)在y=
(4)反比例函数图象若过点(a,b),则它一定过点(-a,-b).()
3、设反比例函数y=
3m的图象上有两点a(x1,y1)和b(x2,y2),且当x1<0 ,在图象的每一支上,y随x•xk的图象有一个交点的纵坐标是2,求(1)x时,有y1 . 4、点(1,3)在反比例函数y=的增大而 . 5、正比例函数y=x的图象与反比例函数y=x=-3时反比例函数y的值;(2)当-3 三、提升能力: 1、三个反比例函数(1)y= kk1k (2)y= 2(3)y=3 在x轴上方的图象如图所示,由此xxx推出k1,k2,k3的大小关系 2、直线y=kx与反比例函数y=-求s△abc. 3、已知函数y=-kx(k≠0)和y=-足为c,则s△boc=_________. 6的图象相交于点a、b,过点a作ac垂直于y轴于点c,x4的图象交于a、b两点,过点a作ac垂直于y轴,垂x4、已知正比例函数y=kx和反比例函数y=析式及另一交点的坐标. 3的图象都过点a(m,1),求此正比例函数解x5、如图所示,已知直线y1=x+m与x轴、y•轴分别交于点a、b,与双曲线y2=分别交于点c、d,且c点坐标为(-1,2). (1)分别求直线ab与双曲线的解析式; (2)求出点d的坐标; (3)利用图象直接写出当x在什么范围内取何值时,y1>y2. 四、反思归纳 k(k<0)x1、本节课学习的内容: 反比例函数的性质及运用 (1)k的符号决定图象_________. (2)在每一象限内,y随x的变化情况,在不同象限,_________运用此性质. (3)从反比例函数y= k的图象上任一点向一坐标轴作垂线,这一点和垂足及坐标原点x所构成的三角形面积s△=_________. (4)性质与图象在涉及点的坐标,确定解析式方面的运用 2、数学思想方法归纳:
反比例函数的应用教学目标篇五
《反比例函数的应用》教学设计
[教学目标]
1.能利用反比例函数的相关知识分析和解决一些简单的实际问题.
2.在解决实际向题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型.
[教学过程]
1.情境创设
k在一个实际问题中,两个变量x、y满足关系式y(k为常数,k≠0),则x
y就是x的反比例函数.由已知关系式和所给的x值(或y值)可以求出对应的y值(或x值).
教学时,教师也可以从学生更加熟悉的生活事例引入课题:
生活中常用的刀具,使用一段时间后就会变钝,用起来很费劲,如果把刀刃磨细,刀具就会锋利起来,你知道为什么吗?
充满气体的气球能够用脚踩爆,超载的汽车容易爆胎„„这是为什么?
2.例题教学
课本提供了两类问题:一类是速度、时间问题,另一类是几何体积问题.生活中有许多反比例函数模型的实际问题,例如:压强与受力面积(压力一定)、长方形的长与宽(面积一定)、速度与时间(路程一定)等,教师可以根据实际情况创设情境.
数学活动:反比例函数实例调查
[数学活动指导]
学生在“用字母表示数”这一章里已经知道不同的实际问题可以用同一个代数式表示,而同一个代数式可以表示不同的实际意义;在“一元一次方程”这一章中,再一次地感受了不同的实际问题中数量的相等关系可以用同一个方程表示,而同一个一元一次方程可以表示不同实际问题中数量的相等关系;在“一次函数”、“分式”等章节中也有类似的内容.在课本中反复出现这样的内容,是为了引导学生充分感受数学的两个重要特征:高度的抽象性和广泛的应用性.
本节活动包含两个方面的内容:
12001.“关系式y表示什么?”主要是要求学生结合生活经验和对反比例x
函数的理解与认识,列举符合条件的实际事例.
2.“调查生活中的反比例函数的实际例子,并运用反比例函数的有关知识解决问题”.要求学生深入生活,进行实地调查.调查可以分组,也可以单独进行,但都应该因地制宜地选择调查部门和对象.