数学函数高一讲解(14篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
数学函数高一讲解篇1
数学函数高一讲解
不论从事何种工作,如果要想做出高效、实效,务必先从自身的工作计划开始。有了计划,才不致于使自己思想迷茫。下文为您准备了数学函数高一讲解。
一、教材内容分析
函数是高中数学的重要内容,函数的表示法是“函数及其表示”这一节的主要内容之一。学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。
学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法。函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念。特别是在信息技术环境下,可以使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。
二、教学目标分析
根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识、能力和情感三个方面制订教学目标。
1.明确函数的三种表示方法(图象法、列表法、解析法),通过具体的实例,了解简单的分段函数及其应用。
2.通过解决实际问题的过程,在实际情境中能根据不同的需要选择恰当的方法表示函数,发展学生思维能力。
3.通过一些实际生活应用,让学生感受到学习函数表示的必要性;通过函数的解析式与图象的结合渗透数形结合思想。
三、教学问题诊断分析
(1)初中已经接触过函数的三种表示法:解析法、列表法和图象法.高中阶段重点是让学生在了解三种表示法各自优点的基础上,使学生会根据实际情境的需要选择恰当的表示方法。因此,教学中应该多给出一些具体问题,让学生在比较、选择函数模型表示方式的过程中,加深对函数概念的整体理解,而不再误以为函数都是可以写出解析式的。
(2)分段函数大量存在,但比较繁琐。一方面,要加强用分段函数模型刻画实际问题的实践,另一方面,还可以通过动画模拟,让学生体验到,分段函数的问题应该分段解决,然后再综合。这也为下一步研究分段函数的单调性等性质打下伏笔。
四、本节课的教法特点以及预期效果分析
(一).本节课的教法特点
根据教学内容,结合学生的具体情况,我采用了学生自主探究和教师启发引导相结合的教学方式。在整个的教学过程中让学生尽可能地动手、动脑,调动学生积极性,充分地参与学习的全过程。倡导学生主动参与、乐于探究、勤于动手,逐步培养学生能够利用函数来处理信息的能力。
(二).本节课预期效果
1.通过具体的实例,让学生体会函数三种表示法的优、缺点。
创造问题情景这种情景的创设以具体事例出发,印象深刻。所以在引入时先从函数的三要素入手,强调要素之一对应关系,然后给出三个具体实例:
(1) 炮弹发射时,距离地面的高度随时间变化的情况;
(2) 用图表的形式给出臭氧层空洞的面积与时间的关系;
(3) 恩格尔系数的变化情况。
指出每种对应分别以怎样的形式展现。引出函数的表示方法这一课题。因为我们这节课的重点是让学生在实际情景中,会根据不同的需要选择恰当的表示方法。会选择的前提是理解,这些完全靠学生的现实经验,让学生自己去发现各自的优劣。这为第一道例题打下基础。
例1通过具体例子,让学生用三种不同的表示方法来表示的同一个函数,进一步理解函数概念。把问题交给学生,学生独立完成,并自己检查发现问题,加深学生对三种表示法的深刻理解。学生思考函数表示法的规定。注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表。
由于这个函数的图象由一些离散的点组成,与以前学习过的一次函数、二次函数的图象是连续的曲线不同。通过本例,进一步让学生感受到,函数概念中的对应关系、定义域、值域是一个整体.函数y=5x不同于函数y=5x (x∈{1,2,3,4,5}),前者的图象是(连续的)直线,而后者是5个离散的.点。由此认识到:“函数图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等。” 并明确:如何判断一个图形是否是函数图象方法?
2.让学生会根据不同的实例选择恰当的方法表示函数
例2用表格法表示了函数。要“对这三位运动员的成绩做一个分析”不太方便,因此需要改变函数表示的方法,选择图象法比较恰当。教学中,先不必直接把图象法告诉学生,可以让学生说说自己是如何分析的,选择了什么样的方法来表示这三个函数.通过比较各种不同的表示方法,达成共识:用图象法比较好。培养学生根据实际需要选择恰当的函数表示法的能力。
学生经过观察、思考获得结论.比如总体水平(朱启南成绩好)、变化趋势(刘天佑的成绩在逐步提高)、与运动员的平均分的比较,等等。培养学生的观察能力、获取有用信息的能力。同时要求学生注意图中的虚线不是函数图象的组成部分,之所以用虚线连接散点,主要是为了区分这三个函数,直观感受三个函数的图象具有整体性,也便于分析成绩情况,加以比较。
3.通过具体的实例,了解分段函数及其表示
生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税税额等等。通过例3的教学,让学生了解分段函数及其表示。为了便于学生理解,给出了实际情况的模拟。可以使函数在数与形两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合的数学思想方法。
数学函数高一讲解篇2
高一数学第一章集合教学计划
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的`有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N*或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含( A )
(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素
5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:
(1) 当x∈N时, x∈G;
(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G
证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,
则x= x+0* = a+b ∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =
且 不一定都是整数,
∴ = 不一定属于集合G
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
数学函数高一讲解篇3
人教版高一数学函数与方程教学计划
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;
3.函数方程思想的.几种重要形式
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;
(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;
(4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;
(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;
(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
数学函数高一讲解篇4
写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
函数定义域的.解题思路:
⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的定义域还要保证实际问题有意义。
相同函数
⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 定义域一致,对应法则一致。
数学函数高一讲解篇5
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;
5.方程k=f(x)有解 k∈D(D为f(x)的值域);
6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);
(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );
8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
数学函数高一讲解篇6
1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
2、函数定义域的解题思路:
⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数
⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 定义域一致,对应法则一致。
4、函数值域的求法
⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。
⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。
⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。
⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换
⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。
⑵ 伸缩变换:在x前加上系数。
⑶ 对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。
⑶ 不要求集合B中的每一个元素在集合A中都有原象。
7、分段函数
⑴ 在定义域的不同部分上有不同的解析式表达式。
⑵ 各部分自变量和函数值的取值范围不同。
⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。
8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。
数学函数高一讲解篇7
1、函数的局部性质——单调性
设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1
⑴函数区间单调性的判断思路
ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1
ⅱ 做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。
ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。
⑵复合函数的单调性
复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。
⑶注意事项
函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。
2、函数的整体性质——奇偶性
对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;
对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。
⑴奇函数和偶函数的性质
ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。
ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
⑵函数奇偶性判断思路
ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。
ⅱ确定f(x) 和f(-x)的关系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。
3、函数的最值问题
⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。
⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。
⑶关于二次函数在闭区间的最值问题
ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。
ⅱ 若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a0时的最大值或a
ⅲ 若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性
若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);
若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。
高中
数学函数高一讲解篇8
高中数学与初中数学的差异
1、知识差异
初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。
2、学习方法的差异
(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。
(2)学生自学能力的差异
初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。
其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。
3、模仿与创新的区别
初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。
4、定量与变量的差异
初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0 (a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。
5、思维习惯上的差异
初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。
数学函数高一讲解篇9
高一数学函数课件
一、内容和内容解析
函数是数学中最重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。托马斯称:函数是现代数学思想之花。
《集合与函数概念》一章在高中数学中起着承上启下的作用。本课学习的函数概念及其反映出来的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础。函数的思想方法贯穿了高中数学课程的始终。
本小节是继学习集合语言之后,运用集合与对应语言,在初中学习的基础上,进一步刻画函数概念,目的是让学生认识到它们优越性,从根本上揭示函数的本质。因此本课的教学重点是:学会用集合与对应语言刻画函数概念,进一步认识函数是描述客观世界中变量间依赖关系的数学模型。
二、目标和目标解析
1.正确理解函数的概念,会用集合与对应语言刻画函数。通过实例分析,体会对应关系在刻画函数概念中的作用;强化数学的应用与建模意识;培养学生的学习兴趣。
2.理解函数三要素,会求简单函数的定义域。通过例题教学与练习,培养归纳概括能力。
3.理解符号y=f(x)的含义,明确f(x)与f(a)的区别与联系。体会函数思想,代换思想,提高思维品质。
三、教学问题诊断分析
本堂课作为一堂公开课,我曾在多个班级试教。主要问题有:
首先,由三个实例归纳共性会遇到困难。原因是由具体实例到抽象的数学语言,要求学生具备较强的归纳概括能力;而对高一学生抽象思维能力相对较弱。
其次,学生不容易认识到函数概念的整体性。原因是把函数单一地理解成函数中的对应关系,甚至认为函数就是函数值。
第三,函数符号y=f(x)比较抽象,学生难以理解。
因此本课的教学难点是:1、从主观知识抽象成为客观概念。2、函数符号y=f(x)的理解。
四、学习行为分析
在初中学生已学习了变量观点下的函数定义,具体研究了几类最简单的函数,对函数并不陌生;学生已经会把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围,学生能列举出函数的实例,已具备初步的数学建模能力。 我们目前所教的学生经历了初中新课程改革,他们普遍思维活跃,表达能力强,有较强的独立解决问题的能力。在平时的学习过程中,他们更喜欢教师创造疑问,然后自己想办法解决问题,通过教师的启发点拨,学生以自己的努力找到解决问题的方法。学生作为教学主体随时对所学知识产生有意注意,努力思索解决疑问的方式,使自己的能力通过教师的点拨得到发挥。
针对学生这一学习方式,我们在教学过程中从学生已有的知识经验出发,让学生明白新问题产生的背景,引导学生对三个实例进行分析,然后归纳共性,抽象出用集合与对应语言刻画的函数概念。其间采用了多媒体动画演示、教师引导、学生探究、讨论、交流一系列活动,让学生感到“概念的.得出是水到渠成的,自然的而不是强加于人的”。
对函数概念的整体性的理解,通过设计“想一想”、“练一练”、“试一试”等问题情景激发学生积极参与,在问题解决的过程中巩固函数概念。而对函数符号y=f(x),则让学生分析实例和动手操作,来认识和理解符号的内涵;并进一步渗透函数思想、代换思想。如三个实例用统一的符号表示、例4中计算当自变量是数字、字母不同情况时的函数值。让学生在做数学中领会含义,学会解题方法,提高解决问题的能力。
五、教学支持条件分析
《标准》提倡运用信息技术呈现以往教学难以呈现的课程内容,数学的理解需要直观的观察、视觉的感知,特别是几何图形的性质,复杂的计算过程,函数的动态变化过程、几何直观背景等,若能利用信息技术来直观呈现使其可视化将会有助于学生的理解。本节课将充分利用信息技术支持课堂教学。
1、 多媒体动画演示炮弹发射。在形象生动的情景中感受高度h随时间t的变化而变化的运动规律。
2、 用几何画板画出h=130t-5t2的图象。在图象上任取一点P(t,h),然后拖动点P的位置,观察点P的横坐标t与纵坐标h的变化规律。
3、 制作幻灯片展示问题情景。
数学函数高一讲解篇10
上册数学第一章教学计划:有理数
教学计划决定着教学内容总的方向和总的结构,并对有关学校的教学、教育活动,生产劳动和课外活动校外活动等各方面作出全面安排。下文为您准备了初一上册数学第一章教学计划:
一、指导思想:
深化教学改革,以促使学生全面、持续、和谐的发展为出发点,课堂中以学生的发展为本,活动为主线,创新为主旨,培养学生的创新意识和实践能力为重点,充分体现新课程、新标准、新教法 坚持走教研之路,努力探索减负增效的教育教学模式,从培养学生学数学、用数学的能力入手,持之以恒地开展教研活动。充分发展学生数学思维,全面提高教育教学质量。
二、学生情况分析
七年级学生往往延用小学的学习方法,死记硬背,这样既没读懂弄透,又使其自学能力和实际应用能力得不到很好的训练,要重视对学生的读法指导。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,初一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应初一教学的新要求,要重视对学生进行记法指导。
三、教材及课标分析
1.通过实际例子,感受引入负数的必要性.会用正负数表示实际问题中的数量.
2.理解有理数的意义,能用数轴上的点表示有理数.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小.通过上述内容的学习,体会从数与形两方面考虑问题的方法.
3.掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算.能运用有理数的运算解决简单的问题.
4.理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示.了解近似数与有效数字的概念.
数学函数高一讲解篇11
两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。
数学函数高一讲解篇12
集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:a?A
(2)元素不在集合里,则元素不属于集合,即:a¢A
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N_或N+
整数集Z
有理数集Q
实数集R
数学函数高一讲解篇13
本节课在教材中的地位和作用:《不等式的基本性质》,对即将要学习的一元一次不等式的解法乃至高中的不等式的运用都是非常重要的基础。本节内容掌握的好坏,将直接影响到后面的教学内容。而对于不等式的基本性质1和2,相信绝大部分的学生都不会有很大困难,而不等式的基本性质3,通过对以往学生的了解,发现很多学生会忘记分正负两种情况,因此在本节新课教学中,我采用了将不等式未知的性质与等式已知的性质进行类比教学,让学生自己去发现验证不等式的性质。
一、教学目标:
(一)知识与技能
1.掌握不等式的三条基本性质。
2.运用不等式的基本性质对不等式进行变形。
(二)过程与方法
1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。
2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。
(三)情感态度与价值观
通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。
二、教学重难点
教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。
教学难点: 不等式基本性质3的探索与运用。
三、教学方法:自主探究——合作交流
四、教学过程:
情景引入:1.举例说明什么是不等式?
2.判断下列各式是否成立?并说明理由。
( 1 )若x-4=12, 则x=16
( 2 )若3x=12, 则 x=4()
( 3 )若x-4>12 则 x>16()
( 4 )若3x>12则 x>4()
【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。
教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。这节课我们就通过类比来探究不等式的基本性质。
温故知新
问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?
等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,
问题2.你能通过实验、猜想,得出进一步的结论吗?
同桌同学通过实例验证得出结论,师生共同总结不等式性质1。
问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?
等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。
估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。
你能和小伙伴一起来验证你们的猜想吗?(教师鼓励学生实践是检验真理的唯一标准。)
学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。
【设计意图】猜想作为教学的出发点,启发学生积极思维,探索规律,让学生在“做”数学中学数学,真正成为学习的主人。
问题4.在不等式两边都乘0会出现什么情况?
问题5.如果a、b、c表示任意数,且a
【设计意图】把文字语言转化为数学语言,是数学学习中的一项基本能力,这里有意识地进行渗透,指导学生先作变形再填不等号,对字母c的取值进行讨论,培养学生的分类意识,对培养学生的思维能力有十分重要的意义。
【想一想】不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?
学生思考,独立总结异同点。
【设计意图】引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。
综合训练:你能运用不等式的基本性质解决问题吗?
1、课本62页例3
教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。
【设计意图】对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。
2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?
【设计意图】及时进行学习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。
3.小明的困惑:
小明用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢?
小明可糊涂了……聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。
【设计意图】通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。
4.火眼金睛
①a>2, 则3a___2a
②2a>3a,则 a ___ 0
【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。
课堂小结:
这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流。
【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。
思考题:你来决策
咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?
【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用数学知识解决实际问题的能力,又树立了学好数学的信心。
数学函数高一讲解篇14
平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形 。
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.
(3)掌握直线方程各种形式之间的互化.
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.
教学建议
1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.
2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习曲线方程打下基础.
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.