最新中考数学知识点复习
文件夹
每个人都应该定期总结自己的行动和决策,以便不断改进。保持客观、全面、真实的态度。以下是一些写作技巧和经验,希望对大家的总结写作有所帮助。
如:3+13=16中,3和13是加数,和是16。从一个数里面去掉一部分求剩下的是多少用减法。
被减数-减数=差。
如:19-6=13中,19是被减数,6是减数,差是13。
(一)熟记表内加法和减法的得数。
(二)知道以下规律。
1、加法。
(1)两个数相加,保持得数不变:如果相加的这两个数有一个增大了,则另一个数就要减小,且一个数增大了多少,另一个数就要减少多少。
(2)两个数相加,其中的一个数不变,如果另一个数变化则得数也会发生变化,且加数变化了多少,结果就变化多少。
(3)两个数相加,交换它们的位置,得数不变。
2、减法。
(1)一个数减去另一个数,保持减数不变:如果被减数增大,结果也增大且被减数增大多少,结果就增大多少;被减数减小,则结果也减小,且被减数减小多少,结果也减小多少。
(2)一个数减另一个数,保持被减数不变:如果减数增大,结果就减小,且减数增大了多少,结果就减小多少;如果减数减小,则结果增大,且减数减小了多少,结果就增大多少。
(3)一个数减另一个数,保持的数不变:被减数增大多少,减数就要增大多少;被减数减小多少,减数也要减小多少。
1、人民币的单位有:元、角、分,相邻单位的进率是10,即1元=10角,1角=10分。
2、人民币按制作材料分为纸币和硬币两种,按单位分为元币、角币和分币三种。其中元币共有七种,分别是1元、2元、5元、10元、20元、50元和100元;角币共有三种,分别是1角、2角和5角;分币也有三种,分别是1分、2分和5分。
3、人民币的换算:
(1)2元8角=(28)角。
2元10角=(30)角。
(2)2元8角=(2.80)元。
2元10角=(3)元。
(3)2.15元=(2)元(1)角(5)分。
12.00元=(12)元。
(4)0.70元=(7)角。
0.05元=(5)分。
4、换钱。
(1)换成一种:1张10元可以换(5)张2元。
(2)换两种以上:1张10元可以换(4)张2元和(2)张1元。
5、解决问题类型:
毛巾8元5角,香皂4元8角,牙膏5元,牙刷2元6角。
(1)牙膏和牙刷一共多少钱?
5元+2元6角=7元6角。
答:牙膏和牙刷一共要7元6角。
(2)牙膏比牙刷贵多少钱?
5元-2元6角=2元4角。
答:牙膏比牙刷贵2元4角。
(3)香皂比毛巾便宜多少钱?
8元5角-4元8角=3元7角。
答:香皂比毛巾便宜3元7角。
(4)用10元钱买毛巾和牙刷,够吗?
8元5角+2元6角=11元1角。
10元11元1角。
答:不够。
数学学习方法技巧。
复习是一个巩固和改进你所学到的东西的过程。
碎片似乎是麻烦,但实际上它是非常有效的,因为它符合人脑记忆的规则,但可以节省时间。
岁面对挫折,有意识地调整自己的心理状态,不要专注于痛苦的经验。
学习是一项长期而艰巨的脑力劳动如果学习过于紧张,持续时间过长,就会导致学习疲劳。
一个人不仅要靠与生俱来的东西,还要靠他从学习中学到的东西来塑造自己。
急功近利容易导致失败,学习应循序渐进。
听课教师应始终遵循思路,善于掌握教师讲解中的关键词,建立自己的知识结构。
五十通过对上节课解题过程中的分析推理过程进行反思和提炼,有助于理解新课程的内容。
使用图表进行比较和复习可以帮助我们准确地、准确地复习知识。
对于具有明显递进关系的知识,可以绘制知识电路图。
做练习是巩固知识最有效的方法,是学习过程中的一个重要环节。
问题后思维是提高知识水平、深化思维深度、提高思维紧张度的有效途径。
(3)分类讨论应逐级有序进行。以探寻直角坐标系中等腰直角三角形存在的问题来说,如果给定两个点a、b,需要在x轴上找第三个点c使得这个三角形abc是等腰直角三角形,这个时候同学们可以线段来分类讨论:ab为斜边时,ac为斜边或时bc为斜边时点c的坐标。这样讨论保证不会丢掉任何一种可能性,并且效率较高。当然也可以按照角来讨论,但是注意不要两种分类方法穿插进行。有些时候有可能会进行二次讨论,这个时候对于同学们的条理性要求就更大了,例如探讨含有30°角的直角三角形时,要先讨论那个角是直角,在讨论哪个角是30°或60°。
第三、在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的,最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。同样有些时候也需要注意是否有些讨论结果重复,需要进行合并。例如直角坐标系中求能够成等腰三角形的点坐标,如果按照一定的原则分类讨论后,有可能会出现同一个点上可以构成两个等腰三角形的情况,这种情况下就要进行合并。也就是说找到的三角形的个数和点的个数是不一样的。
1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置,一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
由于考试题目千变万化,上面所列的项目不一定全面,所以还需要同学们在平时做题的时候多多积累。
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
3。 小数点向左移或者向右移位数不够时,要用0补足位。
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
1。 被除数除数= 被除数/除数
2。 因为零不能作除数,所以分数的分母不能为零。
3。 被除数 相当于分子,除数相当于分母。
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域值最小值);。
4.幂、指、对函数式运算及图像和性质。
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);。
6.空间体的三视图及其还原图的表面积和体积;。
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;。
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;。
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);。
11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;。
12.向量数量积、坐标运算、向量的几何意义的应用;。
13.正余弦定理应用及解三角形;。
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;。
15.线性规划的应用;会求目标函数;。
16.圆锥曲线的性质应用(特别是会求离心率);。
17.导数的几何意义及运算、定积分简单求法。
18.复数的概念、四则运算及几何意义;。
19.抽象函数的识别与应用;。
文档为doc格式。
的考题与往年相比整体难度略有增加,尤其数二的考生,由于去年偏易,所以今年难度有所增加。就高数这部分题目,总体没有偏难偏怪的,但有个别题计算量还是很大的。所以,欲在考试那种高度紧张的环境下拿到高分也绝非易事。
那么接下来就让我们看看“高数”这座神奇的圣诞树上挂着怎样神奇的礼物,探究这些礼物剥开后的饱满果实,相应的也对备战2019考研的同学作出如下规划:
第一,考题“三基”为主,复习大纲先行。
数学作为一门经典的基础课程,历年命题者都会注重对基础内容的考查,今年也不例外,其中,基本概念、基本性质、基本方法的考题能占了七成左右。建议同学们在复习的初期,要结合考试大纲和教材,根据自己所考的卷种,认认真真的把大纲中要求的`每一个知识点都看懂,吃透。相关的考试大纲如果手头没有的话,建议去看我们海文的基础教程,都是严格按照大纲知识点编写的,清晰明了。
第二,考点覆盖面广,复习注意细节,多思考。
对于数一、二、三不同卷种,高数这门学科的区分度是最高的。不同卷种更注重了对单独要求知识的考查,如今年数三不仅考到了常规的经济应用,而且继去年之后又考到了差分方程,数二也考到了较少涉及的曲率知识,所以同学们在备考初期一定要注重全面性。另外在高数的复习过程中千万不能只看不练,要多动手,提高计算能力,同时也要勤于思考,注意总结做题方法与技巧,以提高解题的准确性和速度。
第三,重点知识反复出现,复习时应对重点题型深刻理解,举一反三。
从今年的真题来看,历年重点题型仍然在延续,核心考点和难点基本不变,常规题型的比重还是非常大,以今年数二考题为例,大题中考查到的二重积分、不等式证明根、构造微分方程并求解、条件极值等这些题型基本上每年都会出现。
因此,考生在备考过程中要对往年重点题型进行着重训练,不仅是要了解该题如何做,更要对其考察的基本知识点和相应变形形式都要做到全面理解。
如何从大纲要求的200多个考点中抓住常考题型呢?
考生可以通过做往年的真题自己归纳总结,但是这样做会比较浪费时间,建议借助于参加一些口碑较好的辅导机构的课程。
更多考研常识,免费开课试听可以加王老师qq号62161;加报考顾问李老师微信号:
2.小数的意义:把整数1平均分成10份、100份、1000份这样的一份或几份分别是十分之几、百分之几、千分之几可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位
4.小数的分类:小数 有限小数
无限循环小数
无限小数
无限不循环小数
5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位原来的数分别扩大10倍、100倍、1000倍
小数点向左移动一位、二位、三位原来的数分别缩小10倍、100倍、1000倍
二、数的整除
1.整除:整数a除以整数b(b0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。
最小的质数是2,最小的合数是
1~20以内的质数有:2、3、5、7、11、13、17、
1~20以内的合数有4、6、8、9、10、12、14、15、16、
6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除。
7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。
11.互质数:公约数只有1的两个数叫做互质数。
12.两数之积等于最小公倍数和最大公约数的积。
1.一个加数=和-另一个加数 被减数=差+减数 减数=被减数-差
一个因数=积另一个因数 被除数=商除数 除数=被除数商
2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3.运算定律:
(1)加法交换律:a+b=b+a 乘法交换律:ab=b
两个数相加,交换加数的位置,它们的和不变。
两个数相加,交换因数的位置,它们的积不变。
(2)加法结合律:(a+b)+c=a+(b+c) 乘法结合律:(ab)c=a(b
三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:(a+b)c=ac+b
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:a-b-c=a-(b+c) 除法的性质:abc=a(b
从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
一个数连续除以两个数,等于这个数除以两个除数的积。
1.速度时间=路程 路程时间=速度 路程速度=时间
单价数量=总价 总价数量=单价 总价单价=数量
1.方程:含有未知数的等式叫做方程。
2.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
3.解方程:求方程解的过程叫做解方程。
1.分数的意义:把单位1平均分成若干份,表示这样的一份或几份的数叫做分数。
2.分数单位:把单位1平均分成若干份,表示其中一份的数,叫做分数单位。
3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。
分数和小数的`联系:小数实际上就是分母是10、100、1000的分数。
分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。
4.分数的分类:分数可以分为真分数和假分数。
5.真分数:分子小于分母的分数叫做真分数。真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。
6.最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用%来表示。
1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率
面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。
体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。
质量单位有:吨、千克、克,写出它们之间的进率。
时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。
小月有:4、6、9、11月,共4个,每月30天。
二月平年是28天,闰年是29天。
左拳记月法
3.一年有4个季度,每个季度3个月。
4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
5.名数:把计量得到的数和单位名称合起来叫做名数。
单名数:只带有一个单位名称的叫做单名数。
复名数:带有两个或两个以上单位名称的叫做复名数。
6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。
1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的。
2.角:从一点引出两条射线所组成的图形叫做角。
3.角的大小:角的大小看两条边叉开的大小,叉开的越大,角越大。
1.计量角的大小的单位:度,用符号表示。
2.小于90的角叫做锐角;大于90而小于180的角叫做钝角。角的两边在一条直线上的角叫做平角。平角180。
3.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)
4.平行线:在同一平面内不相交的两条直线叫做平行线。也可以说这两条直线互相平行。
(画图说明)平行线之间垂直线段的长度都相等。
5.三角形:有三条线段围成的图形叫做三角形。
6.三角形的分类:
(1)按角分:锐角三角形、钝角三角形、直角三角形。
(2)按边分:一般三角形、等腰三角形、等边三角形。
10.三角形三个内角和是180。
11.四边形:由四条线段围成的图形。
12.圆是一种曲线图形。圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
13.圆的半径、直径都有无数条。在同一个圆里,直径是半径的2倍,半径是直径的二分之一。
14.轴对称图形:如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
16.周长:围成一个图形的所有边长的总和就是这个图形的周长。
面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
17.表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
体积:物体所占空间的大小叫做物体的体积。
18.长方体、正方体都有12条棱,6个面,8个顶点。
正方体是特殊的长方体,等边三角形是特殊的等腰三角形。
19.圆柱的三个特点:(1)上下一样粗细(2)侧面是曲面(3)两个底面是相同的圆
20.圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。圆柱的高有无数条,这些高都平行且相等。
21.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。
22.圆周率是一个无限不循环小数。=3.141592653
23.把圆等份成若干份,拼成的图形接近于长方形。这个长方形的长相当于圆周长的一半,宽就是圆的半径。
24.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
25.等底等高的圆锥的体积是圆柱的,等底等高的圆柱的体积是圆锥的三倍。
体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的,圆锥的高是圆柱的3倍。
1.比的意义:两个数相除又叫做两个数的比。
比例的意义:表示两个比相等的式子叫做比例。
2.求比值:比的前项除以比的后项所得的商叫做比值。
3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。
比例的基本性质:在比例里,两个外项的积等于两个内项的积。
4.应用比的基本性质可以化简比;
应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。
5.用字母表示比与除法和分数的关系。
a:b=ab=(b0)
6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。
7.图上距离:实际距离=比例尺
或=比例尺 实际距离=图上距离比例尺 图上距离=实际距离比例尺
8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。
化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。
9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
用式子表示:=k(一定),用图表示正比例关系是一条直线。
10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
用式子表示:xy=k(一定),用图表示反比例关系是一条曲线。
1.常见的统计图有条形统计图、折线统计图和扇形统计图。
2.条形统计图特点:(1)用一个单位长度表示一定的数量。(2)用直条的长短来表示数量的多少。 作用:从图中能清楚地看出各数量的多少,便于相互比较。
折线统计图的特点:(1)用一个单位长度表示一定的数量。(2)用折线的起伏来表示数量的增减变化。 作用:从图中能清楚地看出数量的增减变化情况,也能看出数量的多少。
平面图形:
1.长方形:
周长=(长+宽)2 c长=(a+b)2
面积=长宽 s长=a b
2.正方形:
周长=边长4 c正=a4
面积=边长边长 s正=aa
3.平行四边形的面积=底高 s平=ah
4.三角形的面积=底高2 s三=ah2
5.梯形的面积=(上底+下底)高2 s梯=(a+b)h
6.圆的周长=直径3.14 c圆=
圆的周长=半径23.14 c圆=2
圆的面积=半径的平方圆周率 s圆=
立体图形:
1.长方体
表面积=(长宽+长高+宽高)2 s长表=(ab+ah+bh)2
体积=长宽高 v长=abh
2.正方体
表面积=棱长棱长6 s正表=aa
体积=棱长棱长棱长 v正=a3
3.圆柱
侧面积=底面周长高
表面积=侧面积+两个底面积
体积=底面积高
4.以上立体图形的表面积、体积可以统一成公式为:
表面积=底面周长高+两个底面积 体积=底面积高
5.圆锥的体积=圆柱的体积3 v锥=sh3
中考数学命题时,难度一般是6:3:1。施老师说,所谓6,就是卷中60%的基础题、送分题,这些题目大部分同学都会做;3,则是30%的中档题;1,是10%较难的题。对一般同学来说,要保证先拿到60%的基础分,之后把目标对准30%的中档题。至于10%的较难题,则由学生自由发挥了。
而想要拿到60%的基础分,在复习中就务必应该紧扣课标,吃透课本,掌握考试要求。在历年考题中,我们不难发现,不少题目都来自于课本,有的'是从课本上寻找素材,有的则是在课本习题的基础上稍作拓展,还有的甚至跟课本中的题目一模一样。
此外,在复习过程中,要在吃透课本,掌握基础知识同时,重视课本中的例题、课后小结等。在把课本中的基础知识点真正吃透的前提下,再在最后阶段提高解题能力,中考时自然能出好成绩。
数学考试是以题目的形式作为载体,考察考生的素质和潜能。在复习中将课本读薄,那就需要有比较好的归纳总结的能力。
初中数学知识概括起来:函数、方程、不等式、三角形、四边形、圆、概率统计,而这些就是中考时最侧重的知识点。
灵活运用基本数学方法和重要的数学思想
在做数学题时有很多小技巧,利用这些技巧既能节约时间,又可提高做题的准确率。比如,中考数学卷中有10道选择题,占30分,在做选择题时就可用到排除法、令值法、代入法等方法。
排除法大家都知道,所谓令值法,是找一两个特殊的数字(如0、1等)进行验算,最后推出结果,而代入法,则是将选择题中的选项代入题干中,倒过来推算答案,最终确定是不是这一项。
数形结合的思想:2004年考卷中的第10题,问方程2xx2=2/x的正根的个数。当我们稍微对方程的形式做个改变,就会发现这其实是个三次方程,而初中的课本中还没有涉及到该知识,是否就意味着考试时该题无法解答了呢?其实不然,我们只要将左右两个函数图像在同一坐标系中作出,答案就一目了然。
分类讨论的思想:在相同的条件下,如果进行不同的归类,那么得出的结论也可能是不同的。中考考题中经常会出现此类极具区分度的题目,考生需要警惕的是要考虑周到严密,以免遗漏了部分答案。
另外,像估算的方法、令值的方法、配方的方法、类比的方法等,都应该会在解题过程中为考生提供不少帮助。
对于考试的目标,相信不少考生与家长都会认为考得越高越好就是目标,事实上,这样笼统的期望并不能给考生指明努力的方向。
举例来说,把一部分跳高运动员分成两组,一组告诉他们跳得越高越好,另一组则明确要求原本跳140厘米的要达到145厘米,原本跳145厘米要达到148厘米等,结果经过一周的训练后,有明确目标一组的成绩明显要比第一组的成绩来得好。
而对于中考也是如此,根据每位考生不同的条件,制定一个明确的目标,让考生了解自己与目标的距离后,才能更有动力。
问:解题思路都会,但是为什么还是会经常出错?
对于这种状况,失分其实是很可惜的,因为不少考生丢分都在于不知道解题思路。不过,这也是考生在答卷中反映出来的主要问题之一。家长们通常会误认为是考生太粗心的缘故,但归根溯源还在于基本功不够扎实。
一是基本运算错误较多(数式运算统计概率等);
二是数学术语表达能力较差(证明推理归纳等);
三是仔细审题阅读理解能力较弱(应用背景问题);
四是综合应用知识分析解决问题能力亟待提高(各类题型中最后的压轴题);
五是答卷时间安排不妥及抓题目得分点不够。
定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧
课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。
许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。
握了更多的思维方法,为做综合题奠定了一定的基础。
综合题,由于用到的知识点较多,颇受命题人青睐。
做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。
平分弦的直径垂直弦,并且平分弦所对的两条弧。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
点在圆外
点在圆上 d=r
点在圆内 d
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。
相交 d
相切 d=r
相离 dr
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的`切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
外离 dr+r
外切 d=r+r
相交 r-r
内切 d=r-r
内含 d
正多边形的中心:外接圆的圆心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
弧长
扇形面积:
侧面积:
全面积
1 概率意义:在大量重复试验中,事件a发生的频率 稳定在某个常数p附近,则常数p叫做事件a的概率。
2 用列举法求概率
3 用频率去估计概率
人的记忆效果随着时间的推移而迅速下降,这是正常的现象。一是可以通过反复加强记忆,第二种办法就是加强要点和重点的作用,提纲挈领,从而掌握全局。因此,建议大家复习的时候同时要兼顾复习要点,让要点成为复习中的“刀刃”,起到提纲挈领、统领全局的作用。
那么,考研数学复习中的“刀刃”都有哪些呢?下面说明复习高等数学一科的“刀刃”之处。
高等数学是考研数学的重中之重,备考高等数学要特别注意以下三个方面。
一、按照大纲对数学基本概念、基本方法、基本定理准确把握。
数学是一门演绎的科学,靠侥幸押题是行不通的。只有对基本概念有深入理解,牢牢掌握基本定理和公式,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。数学的概念和定理是组成数学试题的基本元件,数学思维过程离不开数学概念和定理,因此,正确理解和掌握好数学概念、定理和方法是取得好成绩的基础和前提。
二、要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。
综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。
三、重视历年试题的'强化训练。
统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。所以希望考生要注意年年被考到的内容,对往年考题要全部消化巩固。这样,通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,但其知识结构基本相同,题型相对固定。要特别注意以题型为思路归纳总结。
中国大学网考研信息。
今年的高考数学卷被很多考生评价为“最难的一门”,老师们在做试卷分析时也普遍认为,试题创新力度大,知识点考查灵活,较好地实现了命题区分度,考生想拿高分并不容易。
学大个性化教育研究院数学组组长周金华介绍,今年高考数学试题难度与去年相比略有上升,估计难度系数在0.60左右。全卷基本遵循“稳中有变、立足基础、突出能力、锐意求新”的命题指导思想,全卷设计合理、梯度适中,覆盖面广、言简意赅。较好地体现了“依纲扣本”,在知识网络的交汇处、思想方法的交织线上和能力层次的交叉区内命题的原则,符合北京中学数学教学实际;对高中数学教学能起到指导和导向作用,为今后的高考复习提供了参考。
纵观数学全卷,选择题简洁平稳,填空题难度适中,解答题层次分明。考题注重了对基础知识、基本方法、基本技能及高中数学主干知识的考查,这有利于稳定考生情绪,有助于尖子生充分展示自己的水平和实力。
在6道解答题中,每道题均以多问形式出现,其中第一问相对容易,大多数考生能顺利完成;而第二问、第三问难度逐渐加大,灵活性渐强,对知识的'迁移和应用知识解决实际问题的能力要求较高,给个性品质优秀、数学成绩良好的考生留有较大的展示空间。
在知识点考查中,今年的试卷侧重考查基本技能,主干知识(函数、三角、平面向量、数列、不等式、空间线面关系、直线与圆锥曲线关系、充要条件等)的重点和关键内容,新增内容全卷占的比例较小,传统内容全卷占的比例较大。如理科卷仅选择题2道:(3)、(5),填空题:(12),文科卷仅选择题第(5)题,填空题第(9)题;知识点和能力综合形式自然,使考查具有一定的难度和深度,有利于尖子生顺利发挥水平,能有效区分不同能力层次的考生群体。
数学,不管对哪个层次的考生来说,最后50天里基础都是同样重要的。建议考生结合三次质检的情况,对得分点、失分点做个总结。找出集中错误,回归课本再重新看知识原理,适当加强相应的.练习。总的来说,在紧跟老师步伐的同时,考生最好抽时间把所有知识理出纲要或者把总复习资料再理一遍;每周保持一定练习,做1~2套试卷,在考前最好达到看到题目就知道考哪部分内容的程度,做到知识脉络和框架了然于胸。
同时,考生也很有必要在认识自己水平的基础上,实行分层次复习。程度较好,想冲高分的学生,再加强基础练习,提高命中率的前提下,可适当找一些难题、新颖题型练手。
程度中等的学生,最后50天里,抓基础就是抓高考(q吧)。高考数学150分里,基础分占到120分左右,包括填空、选择、大题前三题,大题后三题难度比较大,但设问的第一问相对容易。中等及中等以下的学生主要的夺分点就在这几部分。对这些学生来说,心态上要懂得舍弃,分清哪些是自己可得的,哪些是不可得的。做题宁可稳一点、慢一点,哪怕舍弃最后两道难题、只要基础部分的题做好,数学上100分是没有问题的。
做题注意解题规范、避免不必要失分,做填空题、解答题时要注意计算准确、表述清楚、书写规范,避免出现“会而不对、对而不全”的情况。比如,解应用题时,设的未知量代表什么要有适当说明,不能单给个式子;做题步骤要详细写出,不要随意跳步。另外,书写过程中,等号、不等号、特殊点的书写也不可漏,避免不必要的失分。
对于最后两道难度较大的题,第一问做不出来没关系,不要放空,可在承认第一问、第二问成立的基础上,继续做下一问,说不定会有意外收获。
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质。
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动。
(2)连接各组对应点的线段平行(或在同一直线上)且相等。
考点二、轴对称。
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质。
(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定。
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形。
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
考点三、旋转。
把一个图形绕某一点o转动一个角度的图形变换叫做旋转,其中o叫做旋转中心,转动的角叫做旋转角。
2、性质。
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
考点四、中心对称。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质。
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定。
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形。
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征。
1、关于原点对称的点的特征。
两个点关于原点对称时,它们的坐标的符号相反,即点p(x,y)关于原点的对称点为p’(-x,-y)。
2、关于x轴对称的点的特征。
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点p(x,y)关于x轴的对称点为p’(x,-y)。
3、关于y轴对称的点的特征。
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点p(x,y)关于y轴的对称点为p’(-x,y)。
最新中考数学知识点复习(精选14篇)
文件夹