最新数学必考个知识点
文件夹
梦想是生活的动力,它给予我们追求的目标和方向。怎样进行作品赏析是我们提高文学鉴赏能力时需要解决的问题。总结范文可以帮助我们更好地理解总结的要点和重点。
3.使用价值:能够满足人们某种需要的属性。如铅笔的使用价值是可以用来写字,面包的使用价值是可以用来充饥,不同的商品有不同的使用价值。
4.货币:货币也是一种商品,但它比较特殊,它用来充当一般等价物(苹果与面包价格不同,用货币衡量出来的货币有两个职能:一是价值尺度,二是流通手段。
5.纸币是由国家发行的强制使用的价值符号。纸币发行量需要符号一个国家的生产力水平,如果印的钱过多,导致通货膨胀,影响社会稳定。印的过少,导致通货紧缩,影响商品流通,所以钞票不是想印多少就可以印多少。
6.供求关系对价格的影响:当供不应求时,出现商品太少,买商品的人多的情况,这时候价格上涨,形成卖方市场。当供大于求是,出现商品太多,买的人少的情况,这时候价格下降,形成买方市场。
7.价值规律:商品的价值由生产商品的社会必要劳动时间决定。比如李凯生产一部汽车需要花30天的时间。李凯生产一部手机的时间需要花10天时间,那么这部汽车在市场上的价格是这部手机的价格的3倍(可以假设汽车3万元,手机1万元)。也就是说生产一件东西,如果花的时间越多,那么它的价格也就越高。但是价格也受供求关系影响,当市场上卖汽车的很多,卖手机的相对少的时候,这时候汽车价格可能会稍低于3万,手机稍高于1万,但汽车价格基本还是手机价格的3倍。
8.当一件商品价格上升时,买它的人会减少,这种商品的生产规模也会相应地减少;价格下降时,买它的人会增多,这种商品的生产规模会增大。
9.恩格尔系数:食品支出占家庭总支出的比重。恩格尔系数越低,说明生活水平越高,因为系数低,说明花在吃饭上的钱很少,剩下的钱可以用在娱乐上、装修、购买奢侈品。
10.中学生的消费观:要根据自己的能力,适度消费,同时不可以盲从别人,消费的时候要理智,平时消费中;要有保护环境的意识,比如尽量少买或者不买对环境有危害的商品。时刻保持勤俭节约的作风,每一分钱都是用汗水换来的,不能随意挥霍。
11.在我国,公有制为主体地位。公有资产在社会总资产中占优势。
12.国有经济:国有经济控制国民经济命脉,对经济发展起主导作用。即国有经济能控制国家经济的发展方向。(记忆方法:共产党现在绝对控制整个中国,国有经济是被共产党管理的,所以国有经济也肯定能控制得住全国经济。国有经济----控制力)。
13.生产决定消费,消费反作用于生产。
14.我国社会主义初级阶段基本经济制度:(1)公有制为主体(2)多种所有制共同发展坚持我国社会主义初级阶段基本经济制度有得于(1)促进生产力的发展(2)有利于增加综合国力(3)有利于提高人民生活水平。(理解这句话的方法:我国现在正处于社会主义初级阶段,我国现在的基本经济制度是公有制为主体,多种所有制共同发展。为什么要以公有制为主体呢,因为中国共产党信奉的是马克思主义,马克思主义的最大特点是社会多数财富要被国家来控制,所以就有了公有制为主体这么一说;为什么又提到多种所有制共同发展呢?因为只经济成分越多,才会越活跃,大家相互竞争,这样经济发展的才会好,所以就有了多种所有制共同发展这一说)。
15.中学生的择业观(你是如何看待择业的?当代青年如何择业?如果是你,请谈谈你的择业观?当代学生如何选择职业?)碰到这样的问题应该这样回答:我们选择职业时,要根据个人兴趣,特长,选择适合自己的职业,同时也要注意提高自身能力,灵活选择职业,在竞争中处于优势,正当职业没有高低贵贱之分,我们要平等看待每个职业。
16.储蓄,便捷的投资方式(记忆方法:哪都是银行,随便把争存进去就ok了)。
债券,稳健的投资方式(借给别人钱,别人还钱的时候要多给我一部分,我是一个稳健的人)。
股票,高收益和高风险的投资方式(股票升值,我赚钱,贬值我赔钱,时高时低)。
商业保险,规避风险的投资方式(为防意外,买保险,这样即使天塌了,有保险公司顶着)。
17.按劳分配是我国社会分配的基本原则,在所有分配方式中占主体地位。
18.按个体劳动者劳动成果分配。
21.税收具有强制性、无偿性、固定性,三个特征。
22.我国税收取之于民,用之于民。
23.市场经济:市场在资源配置中起基础性作用的经济称市场经济。(不必背下来,理解就行了,理解方法:国家制定好规章制度后就不管市场了,任由各个企业,个体去竞争,达到商品供求平衡。但是,在我国实行的并不是完全意义上的市场经济,我国实行的是社会主义性质的市场经济,即国家有一家干预市场,并不是理想中的市场经济)。
24.市场调节不是万能的,市场调节具有三个弊端自发性,盲目性和滞后性。
25.社会主义市场经济的三个基本特征:坚持公有制为主体;以实现共同富裕为根本目标(;国家能够实行强有力的宏观调控。(什么是宏观调控,宏观调控意思就是国家通过各种政策,引导市场发展方向。比如说全国猪肉价格上涨,百姓抱怨太贵,这时候国家可能会出台一些打击投机倒把的企业或个人,稳定猪肉价格,这算是国家宏观调控的一种方式)。
27.经济全球化积极影响:推动了世界范围内生产力的发展,促进了生产要素在全球范围内的分配消极影响:经济全球化是被发达资本主义国家主导,发达国家财富更多,发展中国家状况更糟,两极分化更加严重。(两极分化是指富人越富,穷人越穷)。
28.中国要积极参与经济全球化,化不利因素为有利因素,抓住机遇,迎接挑战。
29.我国实行对外开放,必须坚持独立自主,自力更生的原则。
30.国家根本属性:阶级性。
31.我国是工人阶级领导的,以工农聪明为基础的人民民主专政的社会主义国家。
32.人民民主专政就是人民当家作主。
33.公民基本的民主权利是选举权和被选举权。
34.权利与义务相统一原则:权利与义务不可分离(不可能只享有权利不遵守义务,也不可能只遵守义务而不能享有权利)。
35.民族区域自治制度:在各少数民族聚居的地方实行区域自治(理解方法:所谓区域自治,也就是一帮人让他们自己选出一个老大,共产党有什么事情需要通知,就告诉这个老大,让老大传达给这一帮人)。
36.处理民族关系的三个原则:民族平等;民族团结;各民族共同繁荣(记忆方法:民族之间出现关系就像两个人闹矛盾一样,这时候就要解决,让两个人重归于好,首先要把两个人摆在平等的位置看待,团结高于一切,不论是国家还是集体,只有内部团结了才能强大;第三,当两个人意识到合好对大家都有好处,即能共同繁荣,这样劝起来就比较容易被接受)。
37.我国民族分布特点:大杂居小聚居。
(记忆方法:意义是多方面的,回答时先把大的方面答出来,再答小的方面,国家利益高于一切,所以先从国家角度叙述意义,国家的对面是少数民族,所以答完国家后再从少数民族的角度去叙述,第三点再从整个民族角度叙述,也就是有利于促进各民族关系。第四点自由发挥,想不出来就写)。
40.国家之间的竞争是综合国力的竞争。
41.我国外交政策是维护世界和平,促进共同发展,坚持和平共处五项基本原则。
42.我国是联合国的创始国,并且是五个常任理事国之一。
43.哲学是世界观和方法论的统一,即哲学不仅是一种观点,同时也具有研究和改造世界的方法。(我们普通人通常都有自己的观点,普通人之所以不是哲学家,是因为不具备哲学的另一个要素:方法论,也就是说普通人没有研究方法,没有对自己的世界观做更深入的思考。普通人中的一小部分人对方法思考的人就是哲学家)。
45.哲学比具体科学范围更广,是对具体科学的升华。具有普遍性。
46.哲学:共性;一般;普遍。
具体科学:个性;个别;特殊。
即哲学与具体科学是共性与个性,一般与个别,普遍与特殊的关系。
47.具体科学是哲学的基础(原因:因为我们一般都是先研究具体科学,掌握规律后才上升到哲学高度,所以具体科学是哲学的基础)。
48.哲学为世界观提供世界观和方法论的指导。
49.物质是不依赖于人的意识,并能被人的意识所反映的客观实在。
51.马克思主义坚持物质第一性,思维第二性的观点,这种观点称为唯物主义。
53.古代朴素唯物主义认为世界是物质的,否认世界是神创造的,但它没有科学依据。
56.唯心主义:意识是第一位的,意识决定物质。
58.物质与运动:物质是运动的,所有物质都在运动,静止的物质也在运动,因为静止是相对的,运动是绝对的。
59.意识是物质世界长期发展发产物。
60.意识是人对客观存在的反映。
61.规律具有客观性和普遍性。
62.实践:以人为主体,以客观事物为对象的活动,具有直接现实性。
63.实践三个特点:(1)具有主观能动性(2)具有客观物质性(3)实践是社会历史性的活动(这么理解第三个特点:人是一代代传承下来的,人的成长也是从出生时的无知慢慢学习的过程,所以我们想做一件事,是根据之前的经验,不论是自己的经验,还是从书本上看到的历史上别人的教训,不论哪种情况,都说明了一点,那就是与以前存在关系,所以实践也是一种社会历史性的活动)。
64.实践是认识的来源,即认识来源于实践,实践决定认识,实践是认识发展的动力。
65.实践是检验认识的唯一标准,是认识的目标和归宿。
66.真理是客观的。
67.认识具有反复性、无限性、上升性(理解记忆:我们对一个规律的认识是在反复的思考验证后才真正认识的;即使我们认识了某一个规律,世界上还有千千万万个规律等着我们去认识,所以具有无限性;我们每认识一个规律,在认识的世界中,我们就前进了一步,所有具有上升性)。
68.联系的观点:联系具有普遍性、客观性、多样性(记忆方法:联系具有普遍性,万事万事间都有联系,所有具有普遍性;事物间的联系是客观存在的,所以具有客观性;纷杂的说不清的联系,体现多样性)。
69.发展是指新事物的产生和旧事物的灭亡。
70.唯物辩证法的根本观点是矛盾的观点。
71.矛盾也叫对立统一(以后见到对立统一,也就是见到矛盾,就如想去北京旅游,但不知道路怎么走,这时候会有两个问题一:请问北京怎么走;二:请问中国的首都怎么走,其实都是一个意思)。
72.矛盾分析法是认识世界和改造世界的根本方法。
73.矛盾的对立性也叫斗争性,统一性也叫同一性(类似于北京,首都,两种叫法,一个意思)。
74.矛盾的斗争性或对立性:指矛盾双方相互排斥、相互对立。
75.矛盾的同一性或统一性:矛盾双方相互吸引、相互联系、相互依赖、相互贯通。
76.矛盾双方既对立又同一,从而推动事物的不断发展。
77.矛盾的两点论:矛盾具有主要矛盾和次要矛盾。
79.马克思主义活的灵魂是:具体问题具体分析。
80.辩证的否定:其实质是扬弃,即抛弃消极的不好的东西,保留积极的,优秀的东西。
81.创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力,是一个政党永葆生机的源泉。创新是时代发展的动力,能够推动社会生产力的发展,推动生产关系和社会制度的变革,推动人类思维和文化的发展。
83.社会存在:社会生活的物质方面,(如高楼大厦,社会上人们拥有的财富,人与人之间的生产关系等;社会意识指社会生活的精神方面(如一个社会的思想潮流,社会的某种风俗等)。
85.坚持群众路线是我们党领导中国人民取得民主革命胜利的重要保证,是取得社会主义革命的保证,是成功建设中国特色社会主义的重要保证。
86.人民群众是历史的创造者,是社会变革的决定力量。
87.一切为了群众,一切依靠群众,从群众中来,到群众中去。
88.一个答题技巧:在问题中有提到人民群众,就要把84,85,86句写上去,如为什么我们党要坚持走群众路线?或坚持群众路线的意义等,只要材料中叙述的主要思想是人民群众,把上面提到的三点都写上去不会错。这是人遇到人民群众的考点,当考试时遇到其它的考点时,把想到的与这个考点有关的观点用自己的语言写上去,句与句之间要有逻辑性,不可乱写。
89.社会主义新型民族关系是平等、团结、互助、和谐。
90.我国处理民族关系的原则:民族平等、民族团结、各民族共同繁荣。
返回目录。
(1)内因是事物变化的根据,外因是事物变化的条件。
(2)认识随着实践的发展而不断深化。
(3)理论来自实践,又能指导实践。
(4)要善于抓重点,集中力量解决主要矛盾。
a、(1)(2)(3)。
b、(1)(2)(4)。
c、(1)(3)。
d、(2)(4)。
答案(b)选择(3)项就是对“理论”这个概念认识模糊,只有把理性认识系统化,并按一定逻辑结构组成一定体系,才称得上理论。显然,题干中村民的这种认识还远称不上“理论”。
忠告:夯实基础,准确理解每个概念、原理。
热词考点:美丽中国。
歌舞《美丽中国走起来》——强调生态文明建设。
热词考点:转变经济发展方式。
歌曲《发光时代》《冲向巅峰》——中国智造;小品《是谁呢》——大众创新,万众创业。
相声《我知道》——攻击侧改革:推动经济结构战略性调整。
热词考点:小康社会建设。
小品《快乐老爸》——农民工孩子进城读书体现公共服务均等化。二孩政策、精准扶贫,加快协调发展,共享发展成果。
歌舞《走在小康路上》——小康社会:具体就是六个“更加”:“经济更加发展、民主更加健全、科教更加进步、文化更加繁荣、社会更加和谐、人民生活更加殷实。”
热词考点:民族区域自治制度。
亚特兰大晨星舞蹈学校华侨华——华侨的定义:“归侨是指回国定居的华侨。华侨是指定居在国外的中国公民。侨眷是指华侨、归侨在国内的眷属。”
歌曲《雪恋》——北京冬奥会、此次申办冬季奥运会的三大理念是:“以运动员为中心、可持续发展、节俭办赛”。
返回目录。
如何提升高考政治成绩。
1、上课的态度要好,要认真。要专心于学业上,想要学有所成,就不要谈恋爱,不要交男女朋友,这样子心无牵挂,读书时没谈恋爱,专心读书,以后绝不会后悔,学业完成后,机会很多。
2、要养成良好的阅读习惯与方法:在实际阅读训练中,通过速读记忆训练的朋友都知道,速度越快记忆越好,详细学习资料你可以到网上去学习。
3、学习过程中难免会做错题目,不管你是粗心或者就是不会,都要习惯性的把这些错题收集起来,每个科目都建立一个独立的错题集,当我们进行考前复习的时候,它们是重点复习对象,因此你既然错过一次,保不准会错第二次,只有这样你才不会在同样的问题上再次失分。
4、同学们最大的困难就是心定不下来,提不起劲,遇到难题解不开,读书摸不着头绪,老是陷在低潮中跳不出来,你应该去请教任课老师或者学习好的同学。同学们,不管你念什么学校,你都应该对自己有信心,对自己的学校有信心,定下心来好好努力,不管学校的升学率如何,只要自己好好努力,就有希望。
返回目录。
2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.
3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.
如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.
6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.
7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点 2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求: 理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意: 被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点 3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点 4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点 5:三角形的重心
考核要求:知道重心的定义并初步应用。
考点 6:向量的有关概念
考点 7:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
考点 8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点 9:解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
考点 10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点 11:用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点 12:画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点 13:二次函数的图像及其基本性质
考核要求:
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
考点 14:圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点 15:圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点 16:垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点 17 :直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点 18:正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点 19:画正三、四、六边形
考核要求:能用基本作图工具,正确作出正三、四、六边形。
考点 20:确定事件和随机事件
考核要求:
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点 21:事件发生的可能性大小,事件的概率
考核要求:
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
考点 22:等可能试验中事件的概率问题及概率计算
考核要求:
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
考点 23:数据整理与统计图表
考核要求:
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点 24:统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点 25:平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点 26:中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
考点 27:频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.
考点 28:中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
何谓“数、行、形、算”,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。
对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。
数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。
由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来“消化”所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:“奇数+奇数=偶数……”可是在做题的时候就想不到用。
对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。
(1)数的整除的特征和性质 (分班常考内容)
(2)位值原理的应用(用字母和数字混合表示多位数)
(1)质数、合数的概念和判断(2)分解质因数(重点)
(1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)
(1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)
近几年来,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张分班试卷的完成应该是能取得很好的成绩的。对此,编辑给出建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程——一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
“降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
“实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。
“旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。
“中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
考点 1:
相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点 2:
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意: 被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点 3:
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点 4:
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点 5:
三角形的重心
考核要求:知道重心的定义并初步应用。
考点 6:
向量的有关概念
考点 7:
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
考点 8:
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点 9:
解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
考点 10:
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点 11:
用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点 12:
画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点 13:
二次函数的图像及其基本性质
考核要求:
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
考点 14:
圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点 15:
圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点 16:
垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点 17 :
直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点 18:
正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点 19:
画正三、四、六边形
考核要求:能用基本作图工具,正确作出正三、四、六边形。
考点 20:
确定事件和随机事件
考核要求:
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点 21:
事件发生的可能性大小,事件的概率
考核要求:
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
考点 22:
等可能试验中事件的概率问题及概率计算
考核要求:
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
考点 23:
数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点 24:
统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点 25:
平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点 26:
中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
考点 27:
频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的.概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点 28:
中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
定义:
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与x轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于x轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
表达式:
斜截式:y=kx+b。
两点式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)。
点斜式:y-y1=k(x-x1)。
截距式:(x/a)+(y/b)=0。
补充一下:最基本的标准方程不要忘了,ax+by+c=0,。
因为,上面的四种直线方程不包含斜率k不存在的情况,如x=3,这条直线就不能用上面的四种形式表示,解题过程中尤其要注意,k不存在的情况。
练习题:
1.已知直线的方程是y+2=-x-1,则()。
a.直线经过点(2,-1),斜率为-1。
b.直线经过点(-2,-1),斜率为1。
c.直线经过点(-1,-2),斜率为-1。
d.直线经过点(1,-2),斜率为-1。
考核要求:
(1)理解相似形的概念;。
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理。
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念。
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用。
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心。
考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念。
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。
考核要求:掌握实数与向量相乘、向量的线性运算。
锐角三角比。
考点1:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点2:解直角三角形及其应用。
考核要求:
(1)理解解直角三角形的意义;。
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
二次函数。
考点1:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;。
(2)知道常值函数;。
(3)知道函数的表示方法,知道符号的意义。
考点2:用待定系数法求二次函数的解析式。
考核要求:
(1)掌握求函数解析式的方法;。
(2)在求函数解析式中熟练运用待定系数法。
考点3:画二次函数的图像。
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像。
(2)理解二次函数的图像,体会数形结合思想;。
(3)会画二次函数的大致图像。
考点4:二次函数的图像及其基本性质。
考核要求:
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;。
(2)二次函数的平移要化成顶点式。
圆的相关概念。
考点1:圆心角、弦、弦心距的概念。
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点2:圆心角、弧、弦、弦心距之间的关系。
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点3:垂径定理及其推论。
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点4:直线与圆、圆与圆的位置关系及其相应的数量关系。
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点5:正多边形的有关概念和基本性质。
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点6:画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
数据整理和概率统计。
考点1:确定事件和随机事件。
考核要求:
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率。
考核要求:
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
考点3:等可能试验中事件的概率问题及概率计算。
考核要求:
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
考点4:数据整理与统计图表。
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;。
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点5:统计的含义。
考核要求:
(1)知道统计的意义和一般研究过程;。
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点6:平均数、加权平均数的概念和计算。
考核要求:
(1)理解平均数、加权平均数的概念;。
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点7:中位数、众数、方差、标准差的概念和计算。
考核要求:
(1)知道中位数、众数、方差、标准差的概念;。
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
考点8:频数、频率的意义,画频数分布直方图和频率分布直方图。
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;。
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。
考点9:中位数、众数、方差、标准差、频数、频率的应用。
考核要求:
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;。
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题。
接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。
二、多做题,养成良好的解题习惯。
要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。
返回目录。
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么。
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次。
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
1、圆的标准方程:
圆心为a(a,b),半径为r的圆的方程。
2、点与圆的关系的判断方法:(1),点在圆外(2),点在圆上(3),点在圆内。
4.1.2圆的一般方程。
1、圆的一般方程:
2、圆的一般方程的特点:
(1)①x2和y2的系数相同,不等于0.
②没有xy这样的二次项.
(2)圆的一般方程中有三个特定的系数d、e、f,因之只要求出这三个系数,圆的方程就确定了.
(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1圆与圆的位置关系。
1、用点到直线的距离来判断直线与圆的位置关系.
4.2.2圆与圆的位置关系。
4.2.3直线与圆的方程的应用。
1、利用平面直角坐标系解决直线与圆的位置关系;。
2、过程与方法。
用坐标法解决几何问题的步骤:
第二步:通过代数运算,解决代数问题;。
第三步:将代数运算结果“翻译”成几何结论.
4.3.1空间直角坐标系。
4.3.2空间两点间的距离公式。
核心考点非常重要。现在离高考时间非常近,满打满算大概40多天的时间,在这样优先的时间里,我们复习肯定要有侧重点。关注核心考点非常重要,核心考点一个是九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。这些内容非常重要。当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。这是从我们的一个角度来说。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
应当说我们后面六个大题基本上是围绕着这样六个板块来进行。这六个板块肯定是我们的核心内容之一。再比如说现在我们高考当中要体现对数学思想方法的考察,数学思想方法以前考察四个方面,函数和方程思想,数形结合思想,分类讨论,等价转换,现在又增加了三个,原来这四个方面当中有两类做了改造。函数和方程思想,数形结合思想,分类讨论改成了分类讨论与整合,等价转换转为划归与转化。有限和无限思想,特殊和一般的思想。
像北京往年考了一道题,一个班里面设计一个八边形的班徽,给了等腰三角形边长为一,现在让你考虑面积多大,按照常规说法,肯定需要考虑四个三角形面积,二分之一乘上一再乘上一,再乘上四,中间还是正方形,利用余弦定理求等腰三角形底边的平方就可以了,最后再一加就是我们要的面积。这个问题并不是很麻烦,不管怎么说肯定需要计算,你至少知道三角形面积怎么求,还得考虑余弦定理,再相加还有运算问题,说不定哪个地方没有记准,可能出现这样那样的问题。
现在离高考时间非常近,满打满算大概30天的时间,在这样优先的时间里,我们复习肯定要有侧重点。关注核心考点非常重要,核心考点一个是九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。这些内容非常重要。当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的`位置关系,平行、垂直的关系怎么判断应该清楚。直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。这是从我们的一个角度来说。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
应当说我们后面六个大题基本上是围绕着这样六个板块来进行。这六个板块肯定是我们的核心内容之一。再比如说现在我们高考当中要体现对数学思想方法的考察,数学思想方法以前考察四个方面,函数和方程思想,数形结合思想,分类讨论,等价转换,现在又增加了三个,原来这四个方面当中有两类做了改造。函数和方程思想,数形结合思想,分类讨论改成了分类讨论与整合,等价转换转为划归与转化。有限和无限思想,特殊和一般的思想。
像北京往年考了一道题,一个班里面设计一个八边形的班徽,给了等腰三角形边长为一,现在让你考虑面积多大,按照常规说法,肯定需要考虑四个三角形面积,二分之一乘上一再乘上一,再乘上四,中间还是正方形,利用余弦定理求等腰三角形底边的平方就可以了,最后再一加就是我们要的面积。这个问题并不是很麻烦,不管怎么说肯定需要计算,你至少知道三角形面积怎么求,还得考虑余弦定理,再相加还有运算问题,说不定哪个地方没有记准,可能出现这样那样的问题。
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!
2.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。用于化简比。
3.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
4.比和比例的联系:
比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,成比例的两个比的比值一定相等。
5.比和比例的区别。
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。联系:比例是由两个相等的比组成。
6.正比例:若a扩大或缩小几倍,b也扩大或缩小几倍(ab的商不变时),则a与b成正比。反比例:若a扩大或缩小几倍,b也缩小或扩大几倍(ab的积不变时),则a与b成反比。比例尺:图上距离与实际距离的比叫做比例尺。
一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。
二、长度单位:
三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。
六、面积单位:(100)
七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)
九、常用的质量单位有:吨、千克、克。
十、质量单位:
十一、常用的时间单位有:
世纪、年、季度、月、旬、日、时、分、秒。
十二、时间单位:(60)
十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。
十四、常用计量单位用字母表示:
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率.
高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2. 判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那
么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解答可多得分
1. 合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
2. 通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
3 .解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1. 导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。
2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3. 要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
1、几何问题代数化。
2、用代数规则对代数化后的问题进行处理。
考点 1:
相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点 2:
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求: 理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意: 被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点 3:
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点 4:
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点 5:
三角形的重心
考核要求:知道重心的定义并初步应用。
考点 6:
向量的有关概念
考点 7:
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
考点 8:
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点 9:
解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
考点 10:
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点 11:
用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点 12:
画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点 13:
二次函数的图像及其基本性质
考核要求:
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
考点 14:
圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点 15:
圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点 16:
垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的.知识点之一。
考点 17 :
直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点 18:
正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点 19:
画正三、四、六边形
考核要求:能用基本作图工具,正确作出正三、四、六边形。
考点 20:
确定事件和随机事件
考核要求:
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点 21:
事件发生的可能性大小,事件的概率
考核要求:
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
考点 22:
等可能试验中事件的概率问题及概率计算
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(sss) 有三边对应相等的两个三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ?
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
1.学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3.数学公式一定要记熟,并且还要会推导,能举一反三。
4.学好数学最基础的就是把课本知识点及课后习题都掌握好。
5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。
6.数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。
7.数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
8.数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。
9.数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
10.数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。
返回目录。
一、数与运算(10个考点)。
考点1:数的整除性以及有关概念(本考点含整数和整除、分解素因数)。
考核要求:(1)知道数的整除性、奇数和偶数、质数和合数、倍数和因数、公倍数和公因数等的意义;(2)知道能被2或3、5、9整除的正整数的特征;(3)会分解素因数;(4)会求两个正整数的最小公倍数和最大公因数.具体问题讨论涉及的正整数一般不大于100.
样题汇编:(正在建设中,期望大家能够有意识地建设自己的考试命题数据库)。
考点2:分数的有关概念、基本性质和运算。
考核要求:(1)掌握分数与小数的互化,初步体会转化思想;(2)掌握异分母分数的加减运算以及分数的乘除运算.
考点3:比、比例和百分比的有关概念及比例的性质。
考核要求:(1)理解比、比例、百分比的有关概念;(2)比例的基本性质.对合分比定理、等比定理不作教学要求.
考点4:有关比、比例、百分比的简单问题。
考核要求:(1)考查比、比例的实际应用,结合实际掌握求合格率、出勤率、及格率、盈利率、利率的方法;(2)会解决有关比、比例、百分比的简单问题,了解百分比在经济、生活中的一些基本常识及简单应用.
考点5:有理数以及相反数、倒数、绝对值等有关概念,有理数在数轴上的表示。
考核要求:(1)理解相反数、倒数、绝对值等概念;(2)会用数轴上的点表示有理数.
注意:(1)去掉绝对值符号后的正负号的确定,(2)0没有倒数.
考点6:平方根、立方根、次方根的概念。
考核要求:(1)理解平方根、立方根、次方根的概念;(2)理解开方与方根的意义,注意平方根和算术平方根的联系和区别.
考点7:实数的概念。
考核要求:理解实数的有关概念.注意:判断无理数不看形式,要看实质.
考点8:数轴上的点与实数的一一对应。
考核要求:掌握实数与数轴上的点的一一对应关系.解题关键是判断实数的大小.
考点9:实数的运算。
考核要求:(1)掌握实数的加、减、乘、除、乘方、开方等运算的法则、性质(交换律、结合律、分配律、互逆性、数0和数1的特征)、运算顺序,明确有关运算性质的推广和运用;(2)会用计算器进行实数的运算.
注意:(1)利用运算定律,力求简便计算和巧算,(2)运算要稳中求快,准确无误.
考点10:科学记数法。
考核要求:(1)理解科学记数法的意义;(2)会用科学记数法表示较大的数.
第二部分方程与代数(27个考点)。
考点11:代数式的有关概念。
考核要求:(1)掌握代数式的概念,会判别代数式与方程、不等式的区别;(2)知道代数式的分类及各组成部分的概念,如整式、单项式、多项式;(3)知道代数式的书写格式.注意单项式与多项式次数的区别.
考点12:列代数式和求代数式的值。
考核要求:(1)会用代数式表示常见的数量,会用代数式表示含有字母的简单应用题的结果;(2)通过列代数式,掌握文字语言与数学式子表述之间的转换;(3)在求代数式的值的过程中,进行有理数的运算.
考点13:整式的加、减、乘、除及乘方的运算法则。
考核要求:(1)掌握整式的加、减、乘、除及乘方的运算法则;(2)会用同底数幂的运算性质进行单项式的乘、除、乘方及简单混合运算;(3)会求多项式乘以或除以单项式的积或商;(4)会求两个或三个多项式的积.注意:要灵活理解同类项的概念.
考点14:乘法公式(平方差、两数和、差的平方公式)及其简单运用。
考核要求:(1)掌握平方差、两数和(差)的平方公式;(2)会用乘法公式简化多项式的乘法运算;(3)能够运用整体思想将一些比较复杂的多项式运算转化为乘法公式的形式.
考点15:因式分解的意义。
考核要求:(1)知道因式分解的意义和它与整式乘法的区别;(2)会鉴别一个式子的变形过程是因式分解还是整式乘法.
考点16:因式分解的基本方法(提取公因式法、分组分解法、公式法、二次项系数为1的十字相乘法)。
考核要求:掌握提取公因式法、分组分解法和二次项系数为1时的十字相乘法等因式分解的基本方法.
考点17:分式的有关概念及其基本性质。
考核要求:(1)会求分式有无意义或分式为0的条件;(2)理解分式的有关概念及其基本性质;(3)能熟练地进行通分、约分.
考点18:分式的加、减、乘、除运算法则。
考核要求:(1)掌握分式的运算法则;(2)能熟练进行分式的运算、分式的化简.
考点19:正整数指数幂、零指数幂、负整数指数幂、分数指数幂的概念。
考核要求:(1)理解正整数指数、零指数、负整数指数的幂的概念;(2)知道分数指数幂的意义;(3)能够运用零指数的条件进行式子取值范围的讨论.
考点20:整数指数幂,分数指数幂的运算。
考核要求:(1)掌握幂的运算法则;(2)会用整数指数幂及负整数指数幂进行运算;(3)掌握负整数指数式与分式的互化;(4)知道分数指数式与根式的互化。
考点21:二次根式的有关概念。
考核要求:(1)理解根式及有关概念,包括最简二次根式、同类二次根式等;(2)理解二次根式与非负数的非负平方根的实质联系,掌握二次根式的性质;(3)能利用公式对二次根式进行化简.
考点22:二次根式的性质和运算。
考核要求:(1)会利用二次根式的性质进行二次根式的变形、简化、求值;(2)会进行二次公式的运算;(3)会利用二次根式的性质及运算解方程或解不等式.掌握与二次根式的性质是解二次根式有关问题的关键,在解二次根式的有关问题时,要注意:(1)关注被开方数字中字母的符号;(2)理解有关二次根式的简化的实质就是二次根式的运算;(3)二次根式的运算或简化的结果必须化为最简二次根式。
考点23:一元一次方程的解法。
考核要求:(1)理解方程、方程的解、解方程和一元一次方程等概念;(2)掌握用移项法则、解一元一次方程的一般步骤,能熟练地解一元一次方程.
考点24:二元一次方程和它的解以及一次方程组和它的解的概念。
考核要求:(1)理解二元一次方程和它的解及一次方程组和它的解的概念;(2)理解一个二元一次程都有无数个解,会求它的某些特殊解;(3)能够利用方程的解求方程中的字母的值.
考点25:二元一次方程组的解法、三元一次方程组的解法。
考核要求:(1)掌握用代入消元法和加减消元法解二元一次方程组的方法;(2)会通过条件列出方程组进行求解;(3)理解多于二元的一次方程组可以利用逐步消元转化为一元方程来求解;(4)会用消元法解简单的三元一次方程组.
考点26:不等式及其基本性质,一元一次不等式(组)及其解的概念。
考核要求:理解不等式及其基本性质,理解一元一次不等式(组)及其解的有关概念.
考点27:一元一次不等式(组)的解法,数轴表示不等式的解集。
考核要求:(1)熟练解一元一次不等式及一元一次不等式组;(2)会求某些一元一次不等式及一元一次不等式组的特殊解(如正整数解);(3)会利用数轴表示不等式及不等式组的解集.
点
最新初一数学必考的21个知识点(优秀20篇)
文件夹