最新人教版数学教学设计与反思
文件夹
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
教学内容:课本89页例1、例2、做一做、练习二第1、2题。教学目标:
1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。
3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。教学重点:让学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:总结分数乘整数的计算方法。教学过程:
一、创设情境,提出学习目标。
1、创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?
比赛题目为:3个 3/10 相加的和是多少?6个 3/10 相加的和是多少?
师:同学们的表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?
第1页/共5页 2、提出学习目标
让学生先说一说,再出示学习目标:(1)分数乘整数的计算方法。
(2)分数乘整数的意义与整数乘法的意义是否相同。二、展示学习成果 1、小组内个人展示
学生独立自学课本89页例1、例2,完成做一做(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)2、全班展示(1)算法展示。
生1:利用乘法与加法的关系进行计算。2/154=2/15+2/15+2/15+2/15=8/15 生2:先计算出结果,再进行约分。5/128=58/12=40/12=10/3= 生3:在计算过程中能约分的先约分,再计算。23/4=3/2 2与4先约分,再计算。(2)比较三种计算方法,选择最优算法。
通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。(3)错例展示:
错例1:学生把整数与分子进行约分。错例2:学生没把计
第2页/共5页 算结果约成最简分数。
3、学生质疑问难,激发知识冲突。
(1)针对同学的展示,学生自由质疑问难。
(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗? 4、引导归纳分数乘整数的计算法则。
分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变;能约分的先约分,再计算。三、拓展知识外延
1、完成课本12页练习二第1、2题。 2、生活中的数学
(1)一个正方形的边长是 4/3dm,它的周长是多少dm?(2)老师从家到学校要步行10分钟, 如果每分钟步行 2/25千米,老师每天要走两个来回,每天一共要走多少千米? 四、总结反思,激励评价。五、布置作业: 1、列式计算
(1)3个2/5是多少?(2)7/12的6倍是多少?(3)5/14扩大7倍以后是多少?(4)3/16与24的积是多少
这个工作可让学生分组负责收集整理,登在小黑板上,每周一
第3页/共5页 换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗? 单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。2、智力冲浪:用12个边长都是 dm的正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(a类同学做)
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学
第4页/共5页习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。
第5页/共5页
圆的面积教学设计
教学内容:新人教版数学六年级上册第67-68页,圆的面积。教学目标:
1,理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。2,经历圆的面积计算公式的推导过程,体会转化的思想方法。3,培养认真观察的习惯和自主探究、合作交流的能力。教学重难点:
1、运用圆的面积计算公式解决实际问题。 2、理解圆的面积计算公式的推导过程。教学准备:多媒体课件
教学方法:自主探究,合作交流
教学过程: 一、小测验:
1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。
2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。二、问题引入
1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?
2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)
3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)三、探索新知
(一)复习近平面图形面积的计算方法。(二)探索圆面积的计算方法 1、我们一起来推导圆的面积公式吧!
2、利用多媒体课件展示圆的面积公式的推导过程。
(1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。(2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。3、在图形的拼凑与转化中,同时观察与思考以下问题。a、拼凑中,圆在转化成什么图形? b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系? c、拼成的近似长方形的面积和圆的面积有什么关系? 4、教师一边引导学生一起回到,一边板书以下填空: 长方形的长是(圆周长的一半),长方形的宽是半径(r)
因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)
如果用s表示圆的面积,那么圆的面积计算公式就是s= πr2 5、学生齐读公式
s= πr2,教师强调r2= r × r(表示2个r相乘)(三)应用公式
一个圆的半径是4厘米。它的面积是多少平方厘米?
思考:1、本题已知什么,要求什么?已知圆的半径,求圆的面积。
2、要求圆的面积,可以直接利用公式把r=4代入计算。 分组合作交流计算,3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。
例1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱? 1、现在你们能解决这节课开始我们提出的数学问题了吗?分组思考,合作交流。2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。
3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。 分组合作,完成计算,并汇报计算过程与结果。
4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。(四)知识应用
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米? 已知什么,求什么?首先要求出什么? 分组合作解决,并汇报结果。
课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。2、街心花园中圆形花坛的周长是18.84米。花坛的面积是多少平方米? 思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。四、课堂总结: 这节课,你有哪些收获?
说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。五、作业布置:
教材第71页,练习十五,第1题~第4题。
【板书设计】:
圆的面积(1)
长方形面积=
长
×
宽
↓
↓
↓
圆的面积=圆周长的一半 ×半径
=πr×r
=πr2
圆的面积公式:s=πr2
第二单元 圆柱与圆锥
单元目标:
1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
2、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。
3、使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。 单元重点:
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。单元难点:
圆柱、圆锥体积的计算公式的推导
1、圆柱
第一课时 圆柱的认识
教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题. 教学目标: 1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。 3、激发学生学习的兴趣。教学重点:认识圆柱的特征。教学难点:看懂圆柱的平面图。教学过程: 一、复习1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:c=2πr或c=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)
(1)半径是1米
(2)直径是3厘米(3)半径是2分米
(4)直径是5分米 二、认识圆柱特征 1.整体感知圆柱(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)(2)找找圆柱,请同学找出生活中圆柱形的物体。2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)3.圆柱的高
(1)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)(2)讨论交流:圆柱的高的特点。①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。③深化感知:面对这数不清的高,测量哪一条最为简便?
老师引导学生操作分析,得出测量圆柱边上的这条高最为简便。4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状. 反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
┌长方形
板书:沿高剪┤
斜着剪:平行四边形
└正方形
强调:我们先研究具有代表性的长方形与圆柱的关系.(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。①讨论:平行四边形能否通过什么方法转化成长方形?
课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形. 三、巩固练习
1.做第11页“做一做”的第2题。 2.做第15页练习二的第3题。
教师行间巡视,对有困难的学生及时辅导。3.做第15页练习二的第4题。四、布置作业
完成一课三练p15的1、2题。板书: ┌长方形
沿高剪┤
斜着剪:平行四边形
└正方形
圆柱的底面周长 → 长方形的长 圆柱的高 → 长方形的宽
圆柱的表面积
教学目标: 1.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。
2.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3.能灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,感受到数学与生活的密切联系。
教学重点: 能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
教学难点: 能灵活运用计算方法解决生活中的问题。教学内容:教材第13页至18页。教学用具:课件、圆柱体物品、剪子 教学过程:
一、创设情境,引起兴趣。 拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)
二、自主探究,发现问题。(一)研究圆柱侧面积:
1.独立操作:利用手中的材料(纸质小圆柱,剪刀),用自己喜欢的方式验证刚才的猜想。2.观察对比:观察展开的图形各部分与圆柱体有什么关系? 3.小组交流:
4.小组汇报,教师指导:(选出一个学生已经展开的图形贴到黑板上)重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积 即: 长×宽 =底面周长×高,所以,圆柱的侧面积=底面周长×高 用字母表示: s 侧 == c × h(二)研究圆柱表面积:
1.现在请大家试着求出这个圆柱体茶叶罐用料多少。(学生测量,计算表面积。)
2.圆柱体的表面积怎样求呢?讨论交流。
(得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2)3.动画:圆柱体表面展开过程 三、实际应用。
1.解决书上的例题。
(1)出示例题,学生读题。(2)同桌合作完成。(3)全班交流。
2.独立完成“做一做”
3.讨论:要求一个圆柱的表面积,一般需要知道哪些条件? 4.试一试练习二的第5题。四、全课总结。
1.交流:这节课里我们学到了哪些知识?根据学生回答教师总结。 2.学生作业:
练习二的第6、7题。
圆柱的体积 教学目的:
1.通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程。
2.掌握圆柱体积的计算公式,并能运用公式解决一些简单的实际问题。3.借助实物演示,培养学生抽象、概括的思维能力。
教学重点:会用圆柱的体积计算公式求圆柱形物体的体积和容积。教学难点:推导圆柱的体积计算公式,并理解这个过程。教学内容:教材第19页至22页。教学用具:圆柱的体积公式演示教具。教学过程: 一、复习引入。
教师出示例题图:
问题:什么叫物体的体积?(物体所占空间的大小)你会计算下面哪些图形的体积?
1.长方体的体积怎样计算? 板书:长方体的体积=底面积×高
2.拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?圆柱的侧面展开是怎样的?侧面积怎么求?(圆柱的侧面积=底面周长×高。)
3.问题:你会求圆柱体的体积吗? 二、新授课。
1.由圆面积的推导思考圆柱体积的推导。
教师:请大家想一想,在学习圆的面积时,我们是怎样把圆变成已学过的图形再计算面积的?
先让学生回忆,同桌相互说说。
然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?
让学生相互讨论,思考应怎样进行转化。指名学生说说自己想到的方法,无论哪种方法,教师都应该给予表扬。
教师:下面,我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
2.圆柱体积计算公式的推导。
(1)由圆的面积推导方法对圆柱底面进行分割
教师:前面我们把圆转化成长方形求出它的面积,现在我们是不是可以将圆柱的底面也进行同样的分割。(出示图示)
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。教师将这分成16块的底面出示给学生看。
问题:现在把底面切成了16份,应该怎样把它拼成一个长方形?
指名学生回答后,老师进行操作演示,先只把底面部分拿给学生看。
教师:圆柱的底面被拼成了什么图形?”
学生:长方形。
教师:大家再看看整个圆柱,它又被拼成了什么形状?(近似长方体)
指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
(2)由长方体的体积求解公式推导圆柱体的体积公式
教师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。
让学生观察,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
结论:圆柱的体积=底面积×高
教师:如果用v表示圆柱的体积,s表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积公式; v=sh
(3)完成做一做:(1)一根圆柱形木料,底面积为 75cm2,长 90cm。它的体积是多少?(学生独立完成)
(4)对公式进行变形
教师:我们知道圆柱体的底面积和高就可以得到圆柱体的体积,那么如果我们知道圆柱体底面的半径r和圆柱体的高h,这时候,你能求出圆柱体的体积吗?
学生推导出圆柱体的体积公式: v=πr2h
3.应用:(出示例题6)下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的。)
思考:要想回答这个问题,首先需要知道什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
明确:题目要求的是杯子的容积,即底面直径是 8cm,高为 10cm的圆柱体积,将体积与498立方厘米进行比较。
教师可以引导学生分析,知道圆柱体的底面直径和高如何求解圆柱体的体积。
计算过程(学生看书。)
进而得出结论。(注意单位的换算关系)三、巩固练习。
练习三的对应题目。四、课堂小结。
交流:谈谈自己的收获。
圆锥的认识
教学目标:
1、认识圆锥及圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。 3、培养学生的自主探索意识,激发学生强烈的求知欲望。教学重点:掌握圆锥的特征。教学难点:正确理解圆锥的组成。
教学内容:教科书第23页至24页的内容,完成练习四的第1、2题。教学用具:圆锥模型。教学过程: 一、复习
1、圆柱体积的计算公式是什么? 2、圆柱的特征是什么? 二、新课。1、圆锥的认识
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆等。(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心o)(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)2、小结:圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高. 3、测量圆锥的高
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;(3)竖直地量出平板和底面之间的距离。4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?(2)实验来得出圆锥的侧面展开后是一个扇形。5、虚拟的圆锥
(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状?
(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。三、课堂练习。
1、做第24页“做一做”的题目。 让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师巡视,对有困难的学生及时辅导。2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。3.完成练习四的第2题。四、总结。
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
圆锥的体积 教学目标:
1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关计算圆锥体积的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。 教学重点:圆锥体体积计算公式的推导过程. 教学难点:正确理解圆锥体积计算公式. 教学内容:教材第25页至28页。教学用具: 圆锥的体积公式演示教具。教学过程: 一、铺垫孕伏。1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)二、探究新知。
(一)指导探究圆锥体积的计算公式. 1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么? 2、学生分组实验,教师巡视指导。3、学生汇报实验结果。
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满. ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.……
4、引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3 ,并板书。(突出等底等高)
5、引导学生用字母表示圆锥的体积公式并板书。 6、讨论交流:要求圆锥的体积,必须知道哪些条件? 7、反馈练习:(口答)
(1)圆锥的底面积是5平方米,高是3米,体积是()。(2)圆锥的底面积是10平方厘米,高是9厘米,体积是()。(3)学生独立解答例题3,集体订正。
8、引导小结:不要漏乘1/3;计算时,能约分时要先约分。(二)讨论交流,拓展深化。
思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)(1)已知圆锥的底面半径和高,求体积.(2)已知圆锥的底面直径和高,求体积.(3)已知圆锥的底面周长和高,求体积. 三、巩固练习。
练习四的第3、4题。四、总结升华
交流:通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式?
最新人教版六年级数学教学设计与反思(3篇)
文件夹