2025年数学建模与中学数学的区别(8篇)
文件格式:DOCX
时间:2023-03-01 00:00:00    小编:为好优姐姐-说

2025年数学建模与中学数学的区别(8篇)

小编:为好优姐姐-说

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

数学建模与中学数学的区别篇一

但由于各种因素的影响,纯粹的数学建模课程单独开设的较少。

因此,在现有的条件下,如何将数学建模的案例切入到平时的课程教学中就成了必要。

关键词 数学建模 中学数学 数学应用能力

近些年来,中学生数学应用能力的培养作为教育改革的重要内容,已经渐渐深入开展,成绩是有的,但由于高考压力等因素的影响,开展数学应用能力教学时间有限,取得的具体成效不是太大。

笔者在高中数学教学工作中,发现单纯地给学生讲解书本的知识、解决课本中的题目,学生很难感兴趣。

分析其主要原因是学生认为学数学与实际结合太少,用处不大,而且又比较难学。

于是就想把中学数学建模引入平时的课程教学,在讲解数学知识点时尽量的引入相应的具体应用。

例如,在讲解数列时,引入相应的金融投资、资源利用等方面的数学模型;解析几何中的线性规划问题;生活中的抛物线问题及概率统计知识实际应用中的数学模型等等。

一方面有利于提高学生学习数学的兴趣,另一方面有利于提高学生的实践能力。

对教师来讲,也可以更好地开展数学应用能力的教学,提升自己的教学业务水平。

中学数学应用能力的培养是一项复杂的系统工程。

教师只有通过“问题解决”的方式组织实施“数学建模”的教学,才能更好的完成这项艰巨的系统工程。

为此,我们必须对“数学建模”的意义有更深刻的认识,对“数学建模”的教学要有精心的设计,对“数学建模”的教学组织形式更要灵活多样。

本文主要探讨一下应用和建模同正常数学教学的结合与“切入”的问题。

教师在平时的数学教学中,可以引入一些较小的数学应用或数学建模的问题,把问题解决的过程分解一下,在教学的局部环节中进行深入讲解。

比如在新知识的引入,复习课时,利用一点时间穿插的介绍一个数学应用或数学建模的问题,让学生在课堂上通过讨论仅仅完成“问题数学化”的过程,最好能建立相应的方程或不等式,而把问题的具体求解过程留给学生放到课堂之外完成。

数学应用在平时教学中的切入点主要以下几类模型:

1不等式模型

现实生活中广泛存在着数量之间的相等或不等关系,如人口控制、生产规划、投资决策、资源保护、水土流失、交通运输等问题中涉及的有关数量问题,常归结为方程或不等式求解,一般都是建立相应的初等模型,其中解不等式组的问题常常就是线性规划的问题。

2函数模型

在现实生活中普遍存在着最优化问题――最佳投资、最小成本等,常常归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数知识和方法解决。

数学模型就是把实际应用问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述。

3数列模型

在现实生活中的许多经济问题,如增长率、利息(单利、复利)、分期付款等与时间相关的实际问题;生物工程中的细胞繁殖与分裂等问题;人口增长、生态平衡、环境保护,物理学上的衰变、裂变等问题,常通过建立相应的数列模型求解。

数列在金融投资方面的应用是很广泛的,用数列知识还可以建立许多金融投资模型,如单利模型、复利模型,年金终值模型、分期付款模型等等。

数学建模对老师、学生都是一个陌生的课题,因此需要一个逐步学习和适应的过程。

在教学的过程中,尤其是在设计数学建模的活动中,教师应首先考虑到学生的应用实践能力和水平及所具备的知识储备。

一般情况下,起点可以低点,形式最好有利于更多的学生参与,不应刻意追求建模过程的步骤和完美性。

从做应用题起步,把问题条件和结论的选择、设定的权利交给学生。

因此,教师可以选择日常生活中同学们熟悉的背景材料,进行一些简单的应用。

我们开展数学建模活动,目的是在不加重学生的学业负担的情况下,提升学生学习数学的兴趣,进而全面提高学生的学习实践能力。

因此在开展数学建模过程中不能把它与基础知识的传授分开,也就是说应把数学建模融入正常的教学过程之中。

为了完成这项系统工程,一方面,教师要结合教材内容在课堂上向学生介绍各种数学知识的产生和发展背景,另一方面,要让学生了解数学知识的应用功能,有了这两个方面做基础,我们要做好的就是寻找数学建模在这些数学教学中的切入点。

综上所述,中学数学教师在数学教学中应注重构建学生的数学建模意识,要真正培养学生的应用能力,仅仅传授知识是远远不够的。

一切教学活动必须以调动学生的主观能动性,培养学生的创新思维为出发点,引导学生在自觉的学习过程中构建数学建模意识。

相信在开展“目标教学”的同时,大力渗透“建模教学”,必将为中学数学课堂教学改革提供一条新路,也将为培养更多更好的“创造型”人才提供一个全新的舞台。

数学概念联系与数学教学【2】

【摘 要】数学概念的教学就是数学概念联系之间的教学。

学生对于数学概念的学习总是存在着一定的困难,其实数学概念之间存在着千丝万缕的联系,而建立数学概念联系能够有助于更好地理解和掌握概念。

本文对数学概念、数学概念联系以及教学两方面进行阐述。

【关键词】数学概念;概念联系;教学

一、数学概念的概述

数学概念是对现实世界的空间形式和数量关系的本质属性的概括和反应。

数学概念是一类特殊概念,其特殊性就表现在它所反映的本质属性只是关于事物的空间形式与数量关系方面的。

二、数学概念的`联系与教学

概念教学就是概念联系的教学,在教学活动中,建立概念联系显得尤为重要。

关于建立概念联系,大体上有两种观点。

杜威及布鲁纳为代表的教育家把联系看作是内部的,倡导发现法。

另外,奥苏贝尔及加涅为代表的教育家是把联系看作是外部的,注重数学结构的分析。

这两种观点都具有一定的片面性,把联系看作是外部的,可以使学习者清晰地看到概念之间稳定的逻辑联系,但是仅仅把联系看作外部的,所能看到的联系是表面的,形式的,难以触及本质。

而简单地把联系看作是内部的,一方面的确可以由内部主动建构出丰富的结构联系,但是却缺乏可见性,不能直观地观察到联系,容易产生概念的模糊和记忆的偏差。

所以,我们应该认识到内部联系、外部联系、内外联系是融于一体、不可分割的整体,缺一不可。

数学概念联系是指数学概念之间所具有的联系性,任一数学概念都由若干数学概念联系而成。

概念联系不仅仅包括不同概念之间的联系,而且还包括同一概念自身的联系。

首先,不同概念之间的联系。

我们在学习数学中要学习到很多的数学概念,甚至可以说,数学概念贯穿于整个数学学习之中,前后所学的概念中都有着息息相关的联系,所学习的某个概念不是一个独立的概念,而是由众多元素所构成的节点,这些构成某个概念的元素也同样可以用于构成其他概念。

概念的学习不是一个简单孤立的过程,而是建立数学概念之间的相互联系。

例1合并同类项:(1)2a+5a-9a (2)-3.4xy+7.1xy-0.6yx

解:(1)2a+5a-9a (2)-3.4xy+7.1xy-0.6yx

=(2+5-9)a =-3.4xy+7.1xy-0.6xy

=-2a =(-3.4+7.1-0.6)xy

=3.1xy

在教学生合并同类项的时候,可以与以前学过的分类知识、乘法分配律、提取公因子等概念相联系,像2a+5a-9a这类的合并同类项,可以先做提取公因子2×3.5+5×3.5-9×3.5,逆用乘法分配律进行计算。

观察两者联系,利用代数思想,表明其中的a的位置地位等同于3.5的位置地位。

而像-3.4xy+7.1xy-0.6yx这类的合并同类项,则需要首先运用分类思想,透过现象认识本质,认出其中xy和yx是同一类,然后运用提取公因子的已有知识进行合并同类项。

从学生的已知认知结构出发,拓展已有概念和新学概念的联系,从学生已有的认知水平中提取对当前认知有用的信息,帮助学生更好更快地掌握新知识。

其次,同一概念自身的联系。

在数学上表现为同一概念的内部逻辑结构、同一概念和各种等价表示之间的联系以及与具体模型相联系的外部表示之间的抽象。

数学概念本身包含所描述的对象,性质,数学思想方法等等,这几个方面之间存在着一定的逻辑关系。

例2甲车在乙车前500千米,同时出发,速度分别为每小时40千米和每小时60千米,多少小时后,乙车追上甲车?

解:设x小时后,乙车追上甲车;

40x+500=60x 20x=500

60x-40x=500 x=25

答:25小时后,乙车追上甲车。

一元一次方程应用题的追及问题一直是教学的重点和难点。

但是追及问题这一概念虽然在应用题中千变万化,但是它们都有一个共同的特征:它们与数学的图形语言紧密结合。

图像是追及概念的一个元素,如果能够将追及概念,图形语言有机联系,学生一定更加容易接受理解掌握这类难题。

概念本身就是一个联系的统一体,认识它本身各种元素的联系,运用联系加强理解掌握,帮助学生在学习概念时事半功倍。

为了使更好地掌握概念以及概念之间的联系,我们可以通过变式,从不同角度研究概念概念之间的联系,全面认识概念。

通过变更对象的非本质属性特征的表现形式,变更观察事物的角度或方法,以突出对象的本质特征,突出那些隐蔽的本质要素。

例3(例2的变式)甲乙两人相距6千米,乙在前,甲在后,两人同时同向出发,3小时甲追上乙。

乙每小时行4千米,甲每小时行多少千米?

解:

设甲每小时行x千米;

3x-4×3=6

3x=12+6

3x=18

x=6

答:甲每小时行6千米。

变更了条件与结论,虽然还是同一个追及概念,但是从不同的方面给出了变式,继续与图形相联系,在模仿的基础上出现小的变化,让学生在加深概念理解的同时,全面俯视概念。

教师通过变式向学生讲解概念的同时,要注意启发学生在自己解题中发现一些概念联系。

教师不但要自己能够将前后所学概念联系在一起,在课堂上教授给学生,而且要教会学生联系这一思想方法。

三、小结

数学的概念教学渗透在整个数学教学之中,通过概念自身或者是现学概念与已学概念之间构建联系,使学生更轻松理解新概念,深入本质掌握新概念。

【参考文献】

[1]李求来,昌国良.中学数学教学论[m].湖南师范大学出版社,

[2]李善良.论概念联系与概念网络在数学概念学习中的作用[j].课程教材教法,,(7)

[3]邵光华,章建跃.数学概念的分类、特征及其教学探讨[j].课程教材教法,,(7):47-51

数学建模与中学数学的区别篇二

中学数学与数学美

美是什么?美学界众说纷纭,无论哪种说法,美的本质是不变的,它是人的一种心理愉悦感受。现实生活中,人们在不断地追求美、发现美、创造美,同时也在欣赏美。大自然是美的,人类是美的,美无时不在,无处不有。“不是缺少美,而是缺少发现美。”多年来,人类在探索美的艺术的同时,也在探索着美的奥秘。

一、数学之美

数学中的美如美酒,如甘泉,自古以来就吸引着人们的注意力。古希腊的学者认为球形是最完美的形体;毕达哥拉斯发现了勾股定理,他为直角之角形具有这种简明、和谐的关系而赞叹;爱因斯坦12岁时,得到了一本欧几里德几何教科书,它的严谨、明澈和确定,给爱因斯坦留下了不可磨灭的印象;罗索在学习欧几里德几何时,感到这是他一生中的一件大事,他像初恋一样地入了迷,没有想到世界上还会有这样有趣的东西。

西方有一句名言:部分与部分及部分与整体之间的协调一致就是美。据此,应用比例的方法,人们找到了造型艺术中具有美学价值的黄金比,并称之为“黄金分割”或“黄金律”.维纳斯像与女神雅典娜像就是美的比例,美的分割,它的下身与全身之比都接近0.618,人体天生有自然美,它的比例也符合“黄金律”.无怪于德国天文学家开普勒称黄金分割为“几何学的一大宝藏!”对称的图形给人以美的享受,而不对称的现象中同样存在着美,这就是黄金分割的美。如今,设计师和艺术家们已经利用这一规律创造出了许多令人心醉的建筑和无价的艺术珍宝。

数学美比比皆是,正如人们常说的:“哪里有数,哪里就有美。”数学美不同于自然美或艺术美。古希腊伟大的哲学家亚里斯多德说过:虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离,因为美的主要形式就是“秩序、匀称和确定性”,这些正是数学研究的原则。英国著名哲学家、数学逻辑学家罗索则把数学之美形容成一种“冷而严肃的美。”他说:数学如果正确地对待它,不但拥有真理,而且也具有至高的美,这种美不仅是投合我们天性的微弱方面,这种美没有绘画和音乐那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术能显示的那种完美的境地。维纳则说:数学实质上是艺术的一种。

可见,数学美是一种完全和谐的、抽象形式的艺术美,是一种客观存在,是自然美在数学中的反映;同时,也是反映客观世界并能动地改造客观世界的科学美。

二、中学数学教学中的美

人们常说:“成功的教学给人一种美的享受。”在数学教学中不仅存在数学科的艺术美、科学美,而且存在着数学教学美。成功的教学是美的,因为它既符合数学教学规律,又显示了人的本质力量。教学活动是师生的共同活动,一方面教师在数学宝库中提练出知识并把它浓缩成教案,然后通过教学的方式传递给学生;另一方面在教学的过程中学生增长了知识和聪明才智,显示了自己的本质力量。数学教学过程不仅仅是学生个体的认识过程和发展过程,而且是在教师的指导下的一种特殊的审美过程,通过数学教学审美活动,可以激励学生的情感、净化学生的心灵、陶冶学生的情操。

在中学数学教材中,很多内容都反映了数学美。如“勾三股四弦五”体现了直角三角形中的奇异美(特殊性),从到 ,又体现了一种统一美。而对于一般三角形,这种统一美又得到了突破,得到余弦定理 ,余弦定理在新的高度上又得到了新的统一。而cosc>0、cosc=0 、cosc<0分别表示锐角、直角、钝角三角形(c为最大边),充分显示了数学的动静美和简、美、真的规律。又如,在立体几何教学中,与已学过的一些几何体的表面积定理相比较,分析球面面积定理:“球面面积等于它的大圆面积的4倍”时,应首先挖掘出定理本身所具有的奇异美,这里的奇异性表现在球面面积的求法别具一格,其次,定理的证明方法也具有奇异性,因为用圆台面积去无限逼近球面的方法是学生前所未见的;此外,公式球体图形的匀称等,也都表现了数学美。

三、如何创造数学教学美

作为一名中学数学教师,我认为创造数学教学美应从以下几个方面下功夫。

1、数学教学语言美

语言是教师进行教学的武器,也是组织学生注意的工具,教师的语言应准确、鲜明、生动、有启发性和教育性。而清晰、流畅、优美、动听且富有节奏变化的教学语言能使学生获得一种美的享受,并能给学生一种潜移默化的影响。苏霍姆林斯基曾经说过:“教师的讲话带有审美色彩,这是一把精致的钥匙,它不仅可以开发情绪记忆,而且可以深入到大脑最隐蔽的角落。”尽管数学具有高度的抽象性和严密的逻辑性,但在数学教学中,应运用形象化的语言。形象化语言是听觉和视着互相结合的语言艺术。它要求教师必须对教学内容进行深刻的感受、理解、想象、体现,然后通过恰当的比喻、通俗的语言展现教学内容的形象。

同时,教师在课堂上呈现给学生的基本表情应是微笑,微笑能启动学生心灵的窗扉,缩短师生之间的感情距离,常常能起到无声胜有声的作用。

2、数学教学的板书美

板书是书法、绘图、制表等技能技巧的综合表现。教师精心设计的板书布局,规范的公式、图形和数字符号,再加上工整秀丽的文字,犹如用文字和符号巧妙组成的一幅艺术作品,能给学生以美的享受,可以激发他们学习数学的兴趣。

3、数学教学中的数学方法美

数学教学应重视数学的方法美。例如数学归纳法表现出的和谐统一,反证法表现出的异军突起,代换法表现出的简洁明快等等,可以说任何一种数学方法都是一种美的形式,都能让学生感受到美的乐趣。具体到一道数学是来说,有时它的解答或证明的方法并不是唯一的,从不同的角度,用不同的思维方式去考虑,最后殊途同归,给人一种美的感受。

4、数学教学中的组织美

所谓组织是指在课堂教学中教师不断组织学生的注意,管理纪律,引导学习,建立和谐的教学环境,指导学生进行学习的行为方式。优秀的教师往往都是优秀的课堂组织管理者,整个课堂,在教师精心的引导下,如行云流水般,给人一种美的享受。

在中学数学教学中,教师若能较深刻地认识数学之美,有意识地创造数学教学之美,将会取得事半功倍的效果。

参考文献:

《数学教学艺术概论》

数学建模与中学数学的区别篇三

摘要:“综合与实践”是新课程学习的四大领域之一,其内容设置的目的在于培养学生综合运用有关的知识与方法解决实际问题。

这种学习活动表现出一种数学建模思想。

针对如何在课堂教学中渗透建模思想,开展建模教学作一些简单的阐述。

关键词:数学实践;教学;数学建模

一、在初中数学课堂中开展建模教学的必要性

某电视台有奖问答中有这样一个问题:在一次乘船游览中,出现意外,母亲、妻子和儿子同时落水,应该先救谁?有人说先救母亲;有人说先救妻子;有人说先救儿子。

三种答案各有其理,但未获奖。

获奖的竟是一名8岁小孩,他的答案是救离自己最近的人,理由是这样能救更多的人。

小孩子为什么能回答正确,因为他一针见血地答出其中的本质。

这其实就是一个数学模型。

荷兰著名的数学家弗赖登塔尔主张“数学源于现实,寓于现实,用于现实”。

在新一轮的课程改革中,加强了数学的应用性、创新性,注意培养学生的应用意识,重视联系学生生活实际和社会实践的要求。

尤其值得大家重视的是:面对世界经济和科技发展的新形势,全国也正在兴起一个科技进步和创新的高潮,有数学应用的地方就有数学建模。

不难看出,在中学数学教学中开展建模活动,渗透建模思想是十分必要的。

二、在初中数学课堂中渗透数学建模

数学建模是指根据具体问题,在一定的假设下找出解这个问题数学框架,求出模型的解,并对它进行验证的全过程。

它是一个“迭代”的过程。

即:准备-段设-模-求解-分析-检验-应用(必要时循环执行)。

在现行的义务教育课程标准实验教科书华师大版数学(七年级上册)中,时常能遇到一些创设有关知识情境的问题,这些问题大多数可以结合数学思想、数学方法进行教学。

在这个教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。

利用课本知识的教学,在学生学习知识的过程中渗透数学建模的思想,能够使学生初步体会数学建模的思想,了解数学建模的一般步骤,进而培养学生用数学建模的思想来处理实际中的某些问题,提高解决这些问题的能力,促进数学素质的提高。

三、如何在初中数学课堂设计建模教学

我们在初中数学课堂中渗透数学建模,目的是培养学生的创造能力和应用能力,把学生从纯理论解题的题海中解放出来,把学生应用数学意识的培养贯穿于教学的始终,让学生学得有趣、学得生动。

因此,在数学建模课堂教学设方面要遵从以下几点:

1.使学生体会数学与生活的密切联系,体会数学的应用价值,培养学生学习数学的应用意识。

在实际的教学中要很好地培养学生学习数学的应用意识,让他们体会数学的应用价值。

例1.1米长的绳子,第一次剪掉它的一半;第二次再剪掉剩下绳子的一半。

按这个方法,当我们剪了5次时,绳子还剩多长?如果剪n次?

此题是在学生学了幂的乘方后,我即兴给学生提出的一道生活问题。

但是否隐含数学问题,考虑的人就不是很多,本题巧妙借助“剪绳子”这一实际问题呈现在学生面前,培养了建模精神,在无形中强化应用数学意识。

2.以建模教学为载体,培养学生能运用数学的思维方式去观察、分析现实社会,并解决日常生活中的问题。

例2.如图火车从a站出发,沿途经过三个车站方可到达b站,若你作为铁道部门主管在此段干线上,应安排几种不同的车票?(来回票价不同,车票分硬卧、软座、硬座、无座四等)

建模与解答:我们把a、b两站和途中三站分别看作一个点,由此,可把此题转化为数线段的条数。

如上图中,可得出有10条线段,这10条线段为不同两地之间的路程,因为来回票价不同,任意两站之间有10~2~4=80种不同的车票。

因此a b之间需要安排80种不同的车票。

那么,能否直接得出答案呢?回答是肯定的。

这样就激起学生的了兴趣。

从a站到b站共5个站,由4x5×(5—1)=80。

共ⅳ站?从而得到4n(n-1)。

3.注重培养学生对数学建模的构建过程,激发学生学习数学的积极性。

数学建模的目的是为了解决实际问题。

因此,要充分强调过程的重要性,尤其要培养学生把客观事物的原型与抽象的数学模型联系起的能力。

例3.问题:“健力宝易拉罐(或可乐)的尺寸为什么是这样的?”在教学中我先让学生测量出听装345 iill健力宝易拉罐的高和底面直径(高约为12.3 cnl,底面直径为6.6em)。

然后围绕厂家为什么采用这样的尺寸,同学们展开了热烈的讨论。

有的同学从审美角度去考虑(是否满足“黄金分割率”);有的同学从经济效益的角度去考虑(是否用料最省,工时最省);有的同学从生理学的角度去考虑(是否手感最好,饮用最方便……)虽然最后没有得到一个一致的、十分完美的结论,但这节课对于培养学生的数学应用能力和发散性思维能力起着十分重要的作用。

总之,在数学建模活动教学中,我们的教学设计要注重从生活实际出发,强调学生的参与性。

因此,我们在数学建模教学的活动设计中,要注意以下几点:(1)注意从学生已有的认知水平出发,小步子、低要求、分层递进。

(2)注意结合正常教学上的教材内容。

(3)注意建模过程的`构建,培养学生思考的过程。

(4)注意培养学生用建模的眼光看问题。

还有我们广大的数学教师个人的意识行为及业务水平等都将直接影响数学建模活动进一步的开展与推广。

参考文献:

[1]黄忠裕,初等数学建模问题集,温州师范学院数学与信息科学学院.

[2]沈来菊,任希荣,学习弗赖登塔尔数学教育思想,数学通讯。(7).

数学建模与中学数学的区别篇四

这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。

在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。

本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还

是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。

数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:

(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。

(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。

(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。

(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。

(5)模型分析:对所得的结果进行数学上的分析。

(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。

数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。我认为学习数学模型的意义有如下几点:一学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代教育所追求的;二学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。

在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方

法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。

数学建模与中学数学的区别篇五

各位老师,上午好!我叫xxx,是**级**班的学生,我的论文题目是《义务教育阶段学生数学建模能力评价研究》。论文是在鲍建生导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的研究背景和主要内容向各位老师作一汇报,恳请各位老师批评指导。

首先,我想谈谈这个毕业论文的研究背景。

在过去的30多年里,数学建模和数学应用成为数学教育的中心话题之一,表现在:关于建模的文献大量涌现,有关数学建模的书籍相继出版以及一系列国际会议的召开:国际数学教育大会 the international congresses on mathematicaleducation…icme,国际数学建模与应用的教学大会the internationalconferences on the teaching of mathematical modeling andapplications--ictma.

在1976年,icme-3上,henry pollak整合应用与建模到数学教学中,作了名为“数学和其他学校学科的相互作用”的调查报告(survey lecture),从而把应用与建模带到了前沿;icme-4上,bell傲了 “学校里数学应用教学的世界范围的可用材料”的报告、从1984年在澳大利亚的icme -5开始,应用与建模被列为每4年一次的icme会议的日程,包括常规工作(regular working),专题小组(topic groups)以及报告(lectures)。

ictma5的历史起于考虑为那些成为研究生后将被要求解决繁杂的真实问题的本科生做准备,在英国,可以被称为ictma之父的david burghes,决定和学校教师一起合作为中学的小孩制作有趣的建模调查,来活跃学校数学课程。ictma团体从1983年开始,每2年举办一次ictma大会,每次会议都会出版一本会议论文集。一系列会议提供一个论坛,讨论所有领域,所有水平的数学教育---从小学到中学到学院到大学一中涉及的应用与建模教学的所有方面。在,ictma成为icmi的一个附属团体,许多成员参与了 icmi研究系列14 “数学教育中的应用与建模”.

其次,我想谈谈这篇论文的主要内容。

本文根据框架上的五个评价桁标进fr测试题的编制,并得到按照“义务教育阶段学生数学建模能力评价框架”编制逑模测试任务时的5个原则:

情境维度:背景不容易剥离:

内容维度:情境下的数学内界所以有可能是多样的;

过程维度:解答建模测试任务��:要“数学化”(现实情境--数学模型)的过程;

任务类型设置维度:三种类型的建模测试形式可以选择某种或某几种;

建模水平维度:需要考虑建模测试任务的水平属于再现、联系、反思的哪一个水平。

并按照评价框架生成数学建模能力测试卷,选取全国八个不同地区的1172名学生进行测试,采用项目反映理论(irt: item response theory)对于测试结果进行分析,检验测试题的拟定水平是否符合客观水平,从而验证了评价框架的合理性和有效性。

最后,我想谈谈这篇论文存在的不足。

这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多。

谢谢!

数学建模与中学数学的区别篇六

数学建模论文格式

数学建模论文格式模板一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的`结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过a4一页,尽量都放在正文中)。

数学建模与中学数学的区别篇七

刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

学校的讲座再次激起了我们对这个曾经的相识思考的热情。

同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。

首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。

学校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。

数学建模与中学数学的区别篇八

【摘要】在中学数学的教学中,要使学生掌握数学知识,提高独立思维能力,发展智力和陶冶个性品质,数学思维问题是核心问题。

作为一名中学数学教师,必须研究数学思维规律,重视数学思维在教学过程中的作用,以便在教学中培养和发展学生的数学思维能力。

【关键词】思维; 持续 ; 诱发 ;

能力从中学数学的教学目的来看,要使学生掌握数学知识,提高独立思维能力,发展智力和陶冶个性品质,数学思维问题是核心问题。

苏联教育家期托利亚尔在《数学教育学》一书中指出:“数学教学是数学(思维)活动的教学。”当前,在数学教学改革中,数学思维是根本的东西。

作为一名中学数学教师,必须研究数学思维规律,重视数学思维在教学过程中的作用,以便在教学中培养和发展学生的数学思维能力。

1数学思维的本质与中学生思维发展的特性

数学思维实质上就是数学活动中的思维。

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
复制