小学数学奥数应用题及答案(四篇)
文件格式:DOCX
时间:2023-03-25 00:00:00    小编:西瓜仙女子

小学数学奥数应用题及答案(四篇)

小编:西瓜仙女子

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

小学数学奥数应用题及答案篇一

每年的三月份是植树的好季节,在植树造林中也有有趣的数学问题。植树的情况不同,主要是由于植树线路不同。请同学们看一看,数一数下面各图中各有多少个点、多少小段。(“段”指相邻两点间的一段,也叫间隔)再想一想点数与段数在什么情况下各有什么联系。

图(1)这条线段图上有()点,共有()段。

图(2)这条线段图上有()点,共有()段。

图(3),这个圆上有()点,共有()段。

由此看出,如果是一条没有封闭的线段,它的点数比段数多1。

如果是一个封闭的圆、长方形、正方形,由于头尾两端重合,它的点数与段数同样多。

二、

1.圆湖的周长1350米,在湖边每隔9米种柳树一棵,在两棵柳树之间种桃树2棵,两棵桃树之间的距离是().桃树和柳树各植()、()棵.

考点:植树问题.

分析:在两棵柳树之间种桃树2棵,两棵桃树之间的距离是:9÷(2+1)=3(米);柳树的间隔数是:1350÷9=150(个),那么桃树有:2×150=300(棵),柳树有150棵,据此解答.

解答:解:9÷(2+1)=3(米),

柳树的间隔数是:1350÷9=150(个),

柳树:150棵;

桃树:2×150=300(棵);

答:两棵桃树之间的距离是3米.桃树和柳树分别植300棵、150棵.

故答案为:3米,300,150.

点评:本题考查了植树问题,知识点是:栽树的棵数=间隔数-1(两端都不栽),植树的棵数=间隔数+1(两端都栽),植树的棵数=间隔数(只栽一端).

小学数学奥数应用题及答案篇二

较为复杂的以成本与利润、溶液的浓度等为内容的分数与百分数应用题.要利用整数知识,或进行分类讨论的综合性和差倍分问题.

【答案解析】第二次降价的利润是:

(30.2%-40%×38%)÷(1-40%)=25%,

价格是原定价的(1+25%)÷(1+100%)=62.5%.

【答案解析】 3×(1-20%)+1×100%=340%=4×85%,所以1个买一件的与1个买三件的平均,正好每件是原定价的85%.

由于买2件的,每件价格是原定价的1-10%=90%,所以将买一件的`与买三件的一一配对后,仍剩下一些买三件的人,由于

3×(2×90%)+2×(3×80%)=12×85%.

所以剩下的买三件的人数与买两件的人数的比是2:3.

于是33个人可分成两种,一种每2人买4件,一种每5人买12件.共买76件,所以后一种

4124)÷(-)=25(人). 252

3 其中买二件的有:25×=15(人). 5(76-33×

前一种有33-25=8(人),其中买一件的有8÷2=4(人).

于是买三件的有33-15-4=14(人).

【答案解析】 设最后甲容器有溶液x立方分米,那么乙容器有溶液(11+15-x)立方分米. 有62.5%×x+25%×(26-x)=11,解得x=12,即最后甲容器有溶液12立方分米,乙容器则有溶液26-12=14立方分米.

而第二次操作是将乙容器内溶液倒入甲容器中,所以乙溶液在第二次操作的前后浓度不变,那么在第二次操作前,即第一次操作后,乙容器内含有水15立方分米,则乙容器内溶液15÷(1-25%):20立方分米.

而乙容器最后只含有14立方分米的溶液,较第二次操作前减少了20-14=6立方分米,这6立方分米倒给了甲容器.

即第二次从乙容器倒入甲容器的混合液是6立方分米.

【答案解析】 山地、丘陵地区耕地为1.39÷2≈0.70亿公顷,那么平原地区耕地为

1.39-0.70=0.69亿公顷,因此平原地区耕地到20xx年产量为:4000×0.69×1.7=4692(亿千克);

山地、丘陵地区的产量为:(4500-4000×0.69)×1.2=20xx(亿千克);

粮食总产量为4692+20xx=6780(亿千克).

3 而人口不超过12.7×1.1≈16.9(亿),按年人均400千克计算.共需400×16.9=6760(亿

千克).

所以,完全可以自给自足.

【答案解析】 我们知道题中情况下,生产产品100吨,需原料190吨。

生产产品100吨,需a种原料200吨,200?190,所以剩下的另一种原料应是生产100吨,需原料小于190吨的,b、c、d、e中只有e是生产100吨产品。只需180吨(180?190),所以另一种原料为e,

设a原料用了x吨,那么e原料用了19-x吨,即可生产产品10吨:

x×100100+(19-x)×=10,解得x=10. 180200

即a原料用了10吨,而e原料用了19-10=9吨.

【答案解析】在已称出的五个数中,其中有两队之和,恰好是四人体重之和是243千克,因此没有称过的两人体重之和为243-125=118(千克).

设四人的体重从小到大排列是a、b、c、d,那么一定是a+b=99,a+c:=113.

因为有两种可能情况:a+d=118,b+c=125;

或b+c=118.a+d=125.

因为99与113都是奇数,b=99-a,c=113-a,所以b与c都是奇数,或者b与c都是偶数,于是b+c一定是偶数,这样就确定了b+c=118.

a、b、c三数之和为:(99+113+118)÷2=165.

b、c中较重的人体重是c,

c=(a+b+c)-(a+b)=165-99=66(千克).

没有一起称过的两人中,较重者的体重是66千克.

补充选讲问题

1、a、b、c四个整数,满足a+b+c=20xx,而且1

请问:a、b、c分别为多少?

【试题分析】 我们注意到:

①1+a<1+b<1+c

②1+a<1+b

先看①

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
小学数学奥数应用题及答案(四篇) 文件夹
复制