2025年一元一次函数教案(五篇)
文件格式:DOCX
时间:2023-03-01 00:00:00    小编:毕上公考

2025年一元一次函数教案(五篇)

小编:毕上公考

作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。

一元一次函数教案篇一

①理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.②能根据问题信息写出一次函数的表达式.能利用一次函数解决简单的实际问题.③经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.教学重点与难点

重点:①一次函数、正比例函数的概念及关系.②会根据已知信息写出一次函数的表达式.难点:理解一次函数、正比例函数的概念及关系.在探索过程中,发展抽象思维及概括能力.教学设计

复习与反思

1.复习:函数与正比例函数的概念和它们之间的关系.注:在对旧知的复习中突出函数是对变量间关系的刻画,正比例函数则是对某一类关系共性的抽象反映.为完善认知与深刻理解概念做准备.2.问题:母亲节快到了,小明想送一大束康乃馨给妈妈,花店老板告诉他,若买10支及10支以下每支的价格为3元,买上了10支以上,超过部分的价格可打8折.如果小明买了x支康乃馨(x>10)付给了老板y元钱.请写出y与x之间的函数关系式.注:得到的解析式不是原先学过的正比例函数,促使学生对函数特征的思考.3.反思:这个函数是正比例函数吗?它与正比例函数有什么不同?这种形式的函数还会有吗? 概念的形成

1.下列问题中变量间的对应关系可用怎样的函数表示? 出示教科书p.90思考①~④.逐一出示题目并由学生完成.此处不必对自变量取值范围作深入追究,重在正确得出关系式.注意选题时各小题表示变量的字母虽然不同,但结构相同,进一步揭示函数的本质在于对变量间对应关系的反映,而与所取符号无关.2.思考:上面这些函数有什么共同点?你能再举出一些例子吗?

引导学生自己得出上面这些函数的形式都是自变量的k(常数)倍与一个常数 的和.并把它们抽象为y=kx+b的形式.在探索过程中,发展抽象思维及概括能力.理解抽象的符号揭示的是一般规律.3.抽取共性,形成概念

一般地,形如y=kx+b(k、b是常数,k≠o)的函数,叫做一次函数.4.回顾反思,追求统一

本节涉及的函数y=6+2.4x,c=7t-35,g=h-105,y=0.1x+22,y=-5x+50都不符合正比例函数的结构,都不是正比例函数,而是一次函数.1那么像y=2x,y=x这些正比例函数是否符合一次函数的结构呢?在怎样的情3况下符合?这说明了什么? 注:从一开始的y=6+2.4x不是正比例函数,引出一次函数的形成,似乎已经画了一个句号.但细敲之下,里面还大有文章.这能给学生带来一种震撼与感悟.5.达成共识,完善认知

学生通过讨论达成共识:当b=0时,y=kx+b即y=kx,所以正比例函数其实是一种特殊的一次函数.应当使学生领会:正比例函数首先是一次函数,其次它是特殊的一次函数.概念的辨析

例1下列函数中哪些是一次函数,哪些又是正比例函数?

8(1)y=-x-4(2)y=5x2+6(3)y=2πx(4)y(5)y=-8x

x特别注意:回答哪些是一次函数时需包含正比例函数,正比例函数是特殊的一次函数.练习:

1.已知下列函数:y=2x+1;y函数的有()a.1个

b.2个

c.3个

d.4个 2.下列说法正确的是()

a、ykxb是一次函数

b、一次函数是正比例函数

c、正比例函数一定是一次函数

d、不是正比例函数就一定不是一次函数

例2.要使y=(m-2)xn-1+n是关于x的一次函数,n,m应满足,.练习:

1、若函数y(b3)xb29是正比例函数,则b = _________

2、在一次函数y3x5中,k =_______,b =________

3、若函数y(m3)x2m是一次函数,则m__________

1x1;y;s=60t;y=100-25x,其中表示一次

2x 2

4、在一次函数y2x3中,当x3时,y______;当x_____时,y5。5.若函数y=(m-1)x|m|+m是关于x的一次函数,试求m的值.注:对解析式结构分析与比较,加深对已有知识的理解,促进认知结构的完善.应用迁移巩固提高

1.已知函数y=(2-m)x+2m-3.求当m为何值时,(1)此函数为正比例函数(2)此函数为一次函数

2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱的油量y(单位:升)随行驶时间x(单位:时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗? 注:逐步形成利用函数观点认识现实世界的意识和能力.小结

1.一次函数的定义

2.正比例函数是特殊的一次函数

3.对于日常生活中的实际问题,解题关键是把问题转化成数学问题,即构建相应的数学模型,建立函数关系式,通过题中条件做出答案.布置作业

1.必做题:教科书p.98习题19.2第3题.教材第3题是根据问题信息列出解析式,在概念辨析上需再补充一题.2x补充:在函数①y=2x-6;②y=;③y=;④y=7-x中,y是x的一次函数的x8是()a.①②③ b.①③④ c.①②③④ d.②③④ 2.选做题:

为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米。收费;每户每月用水量超过6米3时,超过部分按1元/米3收费.设每户每月用水量为x米3,应缴水费y元.(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数.(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.设计思想 在上一节课,学生整体感受了研究函数的一般思路与方法,但在具体知识理解的深度上还是不够的.在这一节中,应当促进学生从整体把握的高度深刻地理解一次函数与正比例函数的概念以及它们的关系.在概念的学习中,教师为学生提供的经验材料太少或者太多都会对概念学习产生不利影响,同时,仅从正面入手还不足以使学生真正理解概念,还必须从侧面和反面来理解概念,通过一定的练习与不同背景下的应用来巩固概念.教学中,需要分清并抓住本质与现象,鼓励学生用自己的语言阐述自己的看法,学生在经历对大量源自实际背景的解析式的分析比较后,抽象概括出它们的一般结构,从而形成一次函数的概念,而在辨析与应用中掌握并进一步理解概念.在知识的获取过程中,始终交织着旧知与新知、变与不变、相同与不同的对立与统一.这些都触动着学生对数学学习的情感.

一元一次函数教案篇二

一次函数教案

(一)教学目标

(一)教学知识点

1.掌握一次函数解析式的特点及意义.

2.知道一次函数与正比例函数关系.

3.理解一次函数图象特征与解析式的联系规律.

4.会用简单方法画一次函数图象.

(二)能力训练要求

1.通过类比的方法学习一次函数,体会数学研究方法多样性.

2.进一步提高分析概括、总结归纳能力.

3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.

教学重点

1.一次函数解析式特点.

2.一次函数图象特征与解析式联系规律.

3.一次函数图象的画法.

教学难点

1.一次函数与正比例函数关系.

2.一次函数图象特征与解析式的联系规律.

教学方法

合作─探究,总结─归纳.

教学过程

ⅰ.提出问题,创设情境

问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.

分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为: y=15-6x(x≥0)

当然,这个函数也可表示为: y=-6x+15(x≥0)

当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).

这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.

ⅱ.导入新课

我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?

1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c•的值约是t的7倍与35的差. 2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.

3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).

4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.

这些问题的函数解析式分别为:

1.c=7t-35. 2.g=h-105.

3.y=0.01x+22. 4.y=-5x+50.

它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和.

如果我们用b来表示这个常数的话.•这些函数形式就可以写成: y=kx+b(k≠0)

一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数(•linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.

练习:

1.下列函数中哪些是一次函数,哪些又是正比例函数?

8(1)y=-8x.(2)y=x.

(3)y=5x2+6.(3)y=-0.5x-1.

2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.

(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?(2)求第2.5秒时小球的速度.

3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗?

解答:

1.(1)(4)是一次函数;(1)又是正比例函数.

2.(1)v=2t,它是一次函数.

(2)当t=2.5时,v=2×2.5=5 所以第2.5秒时小球速度为5米/秒.

3.函数解析式:y=50-5x 自变量取值范围:0≤x≤10 y是x的一次函数. [活动一] 活动内容设计:

画出函数y=-6x与y=-6x+5的图象.并比较两个函数图象,探究它们的联系及解释原因.

活动设计意图:

通过活动,加深对一次函数与正比例函数关系的理解,认清一次函数图象特征与解析式联系规律.

教师活动: 引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.

学生活动:

引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.

比较上面两个函数的图象的相同点与不同点。

结果:这两个函数的图象形状都是______,并且倾斜程度_______.函数 y=-6x的图象经过原点,函数 y=-6x+5 的图象与 y轴交于点_______,即它可以看作由直线y=-6x 向_平移__个单位长度而得到.比较两个函数解析式,试解释这是为什么.猜想:一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?

结论:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线

y=kx平移b绝对值个单位长度而得到(当b>0时,向上平移;当b< 0时,向下平移)。

画出函数y=2x-1与y=-0.5x+1的图象.过(0,-1)点与(1,1)点画出直线y=2x-1.

过(0,1)点与(1,0.5)点画出直线y=-0.5x+1. [活动二] 活动内容设计:

画出函数y=x+

1、y=-x+

1、y=2x+

1、y=-2x+1的图象.由它们联想:一次函数解析式y=kx+b(k、b是常数,k≠0)中,k的正负对函数图象有什么影响?

活动设计意图:

通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解析式联系.

目的:

引导学生从函数图象特征入手,寻求变量数值变化规律与解析式中k•值的联系.

结论:

图象:

规律:

当k>0时,直线y=kx+b由左至右上升;当k<0时,直线y=kx+b由左至右下降.

性质:

当k>0时,y随x增大而增大.

当k<0时,y随x增大而减小.

ⅲ.随堂练习

1.直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为_________,•图象经过第________象限,y随x增大而_________.

2.分别说出满足下列条件的一次函数的图象过哪几个象限?

(1)k>0 b>0(2)k>0 b<0(3)k<0 b>0(4)k<0 b<0 解答:

1.(1.5,0)(0,-3)三、四、一 增大

2.(1)三、二、一(2)三、四、一

(3)二、一、四(4)二、三、四

小结

本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性.

课后作业

习题11.2─3、4、8题.

活动与探究

在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响.

1.y=x-1 y=x y=x+1 2.y=-2x+1 y=-2x y=-2x-1 过程与结论:

b决定直线y=kx+b与y轴交点的坐标(0,b).

当b>0时,交点在原点上方.

当b=0时,交点即原点.

当b<0时,交点在原点下方.

备用题:

1.若函数y=mx-(4m-4)的图象过原点,则m=_______,此时函数是______•函数.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=______,此时函数是______函数.

2.若一次函数y=(1-2m)x+3图象经过a(x1、y1)、b(x2、y2)两点.当x1•y2,则m的取值范围是什么?答案: 1.1 正比例 3 一次

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
2025年一元一次函数教案(五篇) 文件夹
复制