考研数学考试大纲
文件夹
当我们写总结时,应该以具体的事实和数据为依据,避免空泛和主观臆断。写作不仅仅是为了满足自己,也可以与他人分享自己的观点和感受。接下来是一些范文供参考
考试分值和考试时间与以往保持一致:考试时间180分钟,满分150分。数学各部分的试卷内容结构为:数学一(高等数学56%、线性代数22%、概率论与数理统计22%)、数学二(高等数学78%、线性代数22%)、数学三(微积分56%、线性代数22%)。试卷题型结构仍为:单项选择题(8小题、每小题4分、共32分)、填空题(6小题、每小题4分、共24分)、解答题(包括证明题)(9小题,共94分)。
考试内容和考试要求的对比情况:无变动。
数学一:2015年《全国硕士研究生招生考试数学考试大纲》与2014年《全国硕士研究生入学统一考试数学考试大纲》对比,高等数学、线性代数及概率论与数理统计的考试内容和考试要求没有变动。
数学二:2015年《全国硕士研究生招生考试数学考试大纲》与2014年《全国硕士研究生入学统一考试数学考试大纲》对比,高等数学和线性代数的考试内容和考试要求没有变动。
数学三:2015年《全国硕士研究生招生考试数学考试大纲》与2014年《全国硕士研究生入学统一考试数学考试大纲》对比,微积分、线性代数及概率论与数理统计的考试内容和考试要求没有变动。
综上,2015考研数学大纲没有变动,同学们可以按照原来的计划继续有条不紊地复习。已经进入9月中旬,距离考研还有100多天,下半年的任务很繁重,同学们一定要抓紧时间积极备考,争分夺秒地积累知识。文都考研数学老师温馨提示2015考研的广大学员:后期的复习要厚基础,重做题,做好总结与归纳及查缺补漏工作。后续老师会详细给出下半年考研数学的各科及整体的备考建议,请同学们继续关注文都考研大纲解析的相关情况。预祝2015年考研学子考研成功,取得圆满的成绩!
导数和微分的概念,导数的几何意义和经济意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(l'hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值。
考试要求。
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(rolle)定理、拉格朗日(lagrange)中值定理,了解泰勒(taylor)定理、柯西(cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.
9.会描述简单函数的图形.
1.理解多维随机变量的分布函数的概念和基本性质.
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布.
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(bayes)公式等.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
二、随机变量及其分布。
1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(poisson)分布及其应用.
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
5.会求随机变量函数的分布.
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(schmidt)方法.
四、线性方程组。
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.了解一阶常系数线性差分方程的求解方法.
7.会用微分方程求解简单的经济应用问题.
考试要求。
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(rolle)定理、拉格朗日(lagrange)中值定理,了解泰勒(taylor)定理、柯西(cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.
9.会描述简单函数的图形。
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
1.了解级数的收敛与发散、收敛级数的和的概念.
2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.
6.了解、及的麦克劳林(maclaurin)展开式.
(六)常微分方程与差分方程。
2012年9月14日教育部考试中心发布了2013年全国硕士研究生入学统一考试数学考试大纲,与去年相比:高等数学部分没有任何变化;线性代数部分将克莱姆法则均改为克拉默法则,只是法则名称上的变化,内容上没有区别;概率论与数理统计部分数学三将多维随机变量的分布部分考试内容中“两个及两个以上随机变量函数的分布”改为“两个及两个以上随机变量简单函数的分布”,对应的考试要求中将“会根据多个相互独立随机变量的联合分布求其函数的分布”改为“会根据多个相互独立随机变量的联合分布求其简单函数的分布”.概率论这部分内容整体变的简单.具体如下:
试卷题型结构为:单项选择题8小题,每小题4分,共32分;
填空题6小题,每小题4分,共24分;
解答题(包括证明题)9小题,共94分.数学一。
微积分部分:2013年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2012年完全相同.线性代数部分:2013年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2012年基本相同,只是克莱姆法则改为了克拉默法则.概率论与数理统计部分:2013年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2012年相比,变化为:将多维随机变量的分布的考试内容中“两个及两个以上随机变量函数的分布”改为“两个及两个以上随机变量简单函数的分布”,对应的考试要求中将“会根据多个相互独立随机变量的联合分布求其函数的分布”改为“会根据多个相互独立随机变量的联合分布求其简单函数的分布”.这部分内容变的相对简单.大纲在考试要求和考试内容上没有太大变化,对于数学三的同学来说,概率论与数理统计难度降低了,在多维随机变量的分布这一部分中只要求两个及两个以上随机变量简单函数的分布,对于考生来说可以按照既定的复习计划,按部就班的进行备考.与此同时,同学们最好能够根据考试大纲上的知识点再系统的复习一下相应的考试点,一方面可以起到巩固提高的作用,另外一方面,可以形成知识体系脉络.如果对于考点的深度理解和可命题的角度自己不是很有把握,同学们可以结合由高等教育出版社出版的《2013年全国硕士研究生入学统一考试数学考试大纲配套强化指导》这本书进行复习,达到事半功倍的效果.
2025年考研数学考试大纲(模板11篇)
文件夹