心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。优质的心得体会该怎么样去写呢?下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。
学习spss有感——与excel之比较
在学习spss软件的过程中,自己不敢有丝毫松懈,但同时感到学习压力很大,有一定的学习难度,软件的操作可以通过短时间内熟悉,但对数据的结果分析还需要很大很大的提高。在掌握了spss相关技能和熟知了spss之于excel的优越性之后,spss成了往后我进行数据分析、调查的首选软件,如若能自由地结合二者使用,便是更佳选择。
excel的基本功能中包括了比较强大的数据处理功能,还提供了丰富的工作表函数,可以完成很多类型的数据处理和分析任务。除了工作表函数以外,excel还提供了一个称为“分析工具库”的加载宏。
excel应用的普及性,许多人都把它作为最常用的统计软件来使用。excel提供的统计功能包括数据管理、描述统计、概率计算、假设检验、方差分析和回归分析等等,对于统计学原理所涉及的大部分内容已经足够了。然而,在学习excel的统计功能以前我们有必要先交待一下excel在统计分析方面的局限性。
1、就统计学原理所涉及的统计方法而言,excel没有直接提供的方法包括:箱线图(boxplot)、茎叶图、相关系数的p-值、无交互作用可重复的双因素方差分析、方差分析中的多重比较、非参数检验方法、质量控制图等。
2、按照优秀图形的标准,excel做出的很多图形都不合格。excel的有些图形可能适合于普通大众,但不适合用于科学报告中。例如二维图形的三维表示,圆柱图,圆锥图等等。
excel提供的有些图形可能永远不应该使用。
3、excel不能很好的处理缺失值(missing data)问题。总体来说excel对缺失值的处理方式远不如专门的统计软件恰当。
4、虽然大部分情况下excel的计算结果都是可靠的,但在一些极端情况下excel的计算程序不够稳定和准确(特别是excel2003以前的版本中);有些自动功能可能会导致意想不到地结果。
总体来说,excel为我们输入和管理数据、描述数据特征、制作统计表和统计图都提供了强大的支持,但在处理复杂的计算时有时候误差相对较大,因而一些数据处理专家建议人们避免采用excel处理复杂的统计问题。spss能在简单操作基础上,解决excel存在的这些问题,甚至非统计学相关专业的人员也可以利用这个软件对复杂的统计问题进行处理、分析。
平时我惯常使用的数据分析软件也是excel。虽然使用excel可以对数据进行透视、分类、筛选以及计算相关系数等,但是这些操作都需要自己每一步每一步的进行手动操作,而使用spss软件在对数据进行整理时,只需对软件某选项内设置变量条件,系统便自动的进行整理。而且,在学习与应用spss过程中,我了解到应用spss软件只要了解统计分析的原理无需知晓统计方法的各种算法就能得到自己所需要的统计分析结果。另外对于常见的统计方法,spss的命令语句、子命令及选择项的选择绝大部分在软件内的对话框操作完成,我们无需花费大量的时间记忆大量的命令和选择项。在这方面,spss软件的应用可以使我们节省大量时间,而且软件操作比较容易上手,在当今这个时间就是金钱的社会上,我们掌握spss软件的应用,也就是为自己赚取了不少金钱。
另外在与spss的接触中,我逐渐了解到spss软件的强大与方便。spss提供了从简单的统计描述到复杂的多因素统计分析方法,其中有数据的统计分析、统计描述、交叉表分析、二维相关、方差分析、多元回归、因子分析、聚类分析、降维等分析方法。利用这些方法可以得出计算数据和统计图形,看出数据的离散程度、集中趋势和分散程度,单变量的比重,还有对数据进行标准化处理。利用这个软件对问卷数据进行分析是极好的。虽然,这些方法大部分我还是不会使用,能够让我利用并成功分析的方法只有寥寥几种,但是这种简单便捷的操作让我对spss的兴趣却是越来越浓。
spss 像手枪,对于社会统计应用spss,足够精度了。exce对初级统计技术也差不多了,里面有很多类型的图,配之以数据透视表,模拟运算表,宏,高级筛选,窗体,而且方便的单元格和变量操作这些优点都使得excel 更利于小规模,低精度,逻辑关系简单的数据,但是简单的图和表,有时不需要通过假设检验,也能看出很多关系或结论,这些直观的现象有的时候比spss的假设检验更有说服力(spss的假设检验虽然精确,但是成本是很多模型假定)其统计思想易于被日常生活所接受,所以execl用得好,更能显出使用者谙熟研究背景和统计思想,这个修炼层次更高,就像武功最高深的人更最简单的工具,最简洁的招式,实而不华一样。
了解了excel和spss的这个比较后,可以看出spss的统计思想体现了更多数理统计的味道,而excel 则更多体现了描述统计的味道,所以了解spss更重要的是了解不同模型背后的统计想法,当然这些在使用spss的过程中会慢慢的积累的。一个和学习统计思想无关的,但是在学习spss中必须学会的是“数据组织方式和数据测度”,这个对于那些学习信息的人容易理解,对文科出身的人不容易理解。但是这个问题对于初学者很重要。在实际使用spss时,就得按部就班地按照先定义变量,调测度,在录入(导入数据),再分析。分析并不是整个流程。不注意数据的组织方式和数据测度会使很多统计模型误用(实际上不能用,但是软件输出了统计结果),这种误用不是统计模型用得好不好的问题,而是能不能用的问题!
现在,学期即将结束,同样的这门课程也到了尾期,在这学期学到了很多,并且还有很多没有学到。我们学习时所操作的软件是英文版,这对英语基础不好的我来说是个考验。同时,由于我们所学专业并非必须拥有计算机,导致我们平时能够练习的机会比较少,造成了掌握不牢固,前学后忘现象比较严重。现在呢,很是希望能够把spss的应用熟练操作,并且能把它变为自己的一种本能,使自己在今后的工作与学习中,可以轻松运用。
spss软件学习心得
spss(statistical product and service solutions),名称是“统计产品与服务解决方案”软件。spss软件的统计分析步骤:
(1)读入数据文件,或直接建立spss数据文件,或调用其它类型的数据文件,如:excel、纯文本文件等;
(2)调用统计分析程式或模板;
(3)选择变量,设定参数并运行;
(4)查看统计分析输出结果。
spss的主要功能分为两个方面:一个是对数据文件的建立和管理;另一个是提供了各种统计分析方法。对数据文件的建立和管理主要通过data菜单和transform菜单实现,可以对数据进行修改编辑、查找、排序、合并、分割、抽样、加权、重新编码、编秩、设定种子数及计算或转换新的变量等多种功能;提供各种统计分析方法则是通过analyze菜单实现.可以对数据集进行一般统计分析,如描述性统计、探索性分析、t检验、单因素和多因素方差分析、协方差分析、四格表和列联表卡方检验、相关分析、线性回归分析、非参数检验、生存分析等。
特点:不需编程,完全采用菜单和对话框的操作方式,绝大多数操作过程仅靠鼠标点击即可完成,简便易学,易于操作;具备完备的统计图表制作功能,能绘制精美的统计图表,并可以极其方便地对其编辑和修饰。
应用例子:如为了科学合理的评估和开发利用河北省土壤中水分,并在不同地区因地制宜的采取相应措施,选定了干旱指数、土壤质地和植被等指数,用层次分析法,计算出每个指标的权重,利用spss统计软件,对河北省土壤水资源进行分类,细分为了8类,实现了有效合理地利用土壤水分。
误差理论数据处理分析
常见的统计软件有sas,spss,minitab,excel等。这些统计软件的功能大同小异,各有所侧重。其中的sas和spss是目前在大型企业,各类院校及科研机构中较为流行的两种统计软件。特别是spss,其界面友好,功能强大,易学,易用,包含了几乎全部尖端的统计方法,具备完善的数据定义,操作管理和开放的数据接口以及灵活美观的统计图表制作。作为专业的统计软件,spss感觉比excel更丰富,也更准确。
从表1中分析,抗拉强度的极小值为67.89,极大值为80.36,均值标准误差为0.86948,标准差为3,47793,方差为12.096。屈服强度的极小值为47.14,极大值为8.227。
表
2从表2中分析,回归平方和为176.469,自由度为1,均值方差,176.469,显著性为
497.056,残差平方和为4.970,自由度为14,均值方差为0.355。
表
3从表3从分析,常数量b为12.514,非标准化系数的标准误差为2.719,t值为4.602。标准系数使用版为0.986,t值为22.自变量的b值为1.196,非标准化系数的标准误差为0.054,295。
表
4图
1从散点图可以看出,抗拉强度y与屈服强度x大致呈线性关系。人们假设y与x之间的内在关系是一条直线,这些点与直线的偏离是实验过程中其他一些随机因素的影响而引起的。
心得体会
在学习spss中必须学会的是“数据组织方式和数据测度”,这个对于那些学习信息的人容易理解,对文科出身的人不容易理解。但是这个问题对于初学者很重要。在实际使用spss时,就得按部就班地按照先定义变量,测调度,在录入(导入数据),再分析。分析并不是整个流程。
在大二快结束的学习过程中参加了spss的课程学习,尽管我只是大略地学习,泛泛地接触这门课程,但是对这门课的兴趣很浓。参与这次实践的经历深刻改变了我对这门课的认识。我越发感到我需要这门课程,我必须掌握这门统计技术,分析方法。这就是社会的需求,学校的标准,也是个人发展得需要。
虽然只有几周的学习时间,但我已经对该课程有了更多的了解,十分感谢黄璟老师讲解的这门课,提供了这个平台。理论加实践,为不同基础的学生提供了好的学习环境。我认为开设很有必要,应当成为重点。
现实生活中的数据多不胜数,但要得到有用的数据并不容易,这就要应用数据分析的方法确定数据的属性,再用清理工具(清洗、集成、转换、消减)进行筛选转化为有用的信息,再用spss深入分析,得出规律。
对数据的分析是以统计学为基础的,统计学提供了一套完整的科学方法论,统计软件则是实现的手段,统计分析软件具有很多有点。它功能全面,系统地集成了多种成熟的统计分析方法;有完善的数据定义、操作和管理功能;方便地生成各种统计图形和统计表格;使用方式简单,有完备的联机帮助功能;软件开放性好,能方便地和其他软件进行数据交换。我们接触最多的统计软件是excel 和spss。在统计学中应用excel,在数据分析中则主要是spss,它具有很好的人机界面和完善的输出结果。
这门课程中我们学了另外一种数据分析方法就是聚类分析。它与“物以类聚,人以群分”是同样的道理。多元统计分析方法就是对样品或指标进行量化分类的问题,它们讨论的对象是大量的样品,要求能合理地按各自的特性也就是相似性来进行合理的分类,没有任何模式可供参考或依循,即是在没有先验知识的情况下进行的。我们学习了q型聚类法、r型聚类法以及系统聚类法。q型聚类分析样品间的聚类,用距离来测度亲疏程度。r型聚类分析变量间的聚类,用相似系数来测度亲疏程度。
常用的q聚类法有闵氏距离和马氏距离,只是我们必须掌握的。具体的计算方法有最短距离法、最长距离法、重心法、离差平方和连接法等等。在最后一节课老师讲了贝叶斯理论,根据先验概率和实验事件得出后验概率,从而得出更为可信的概率。最后,这门课程就学完了,学到了很,还有很多不懂。本课程需要很好的统计和概率论的基础,要不,很难听懂或者简直听不懂。同时,老师很少强求我们及时做作业,以至于我们知识掌握不牢固,前学后忘现象严重。有时候觉得老师讲得过深,我们根本无法接受。希望老师以后讲授本课程时把难度降低一点,多给学生练习的机会。我希望在考试之前把学懂的知识巩固,把不懂得尽量弄懂,但愿以后在工作中能轻松运用。
篇一:spss学习心得
本学期是我在大学学习的最后一个学期。在这个学期里,学校根据我系专业特点开设了一些专业应用性课程,其中有一门课程便是spss。
spss的中文名称是社会科学统计软件包,是世界上最早的统计软件。我们学期学习所使用的软件为英文版,起初接触时由于我英语水平问题,spss软件的操作让我很是头疼。但是通过对这门课程的学习,我了解到spss具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。在日常的工作与学习中,我所接触到的数据比较多,但是我想从中获得有用的数据却很难,通过spss软件应用,使我处理数据的时间大幅度的缩短,另外也能客观直接的对我所需要的数据进行简单分析。
在我平日课下进行统计调查技能培训的时候,我起初分析数据所用的软件是excel。虽然使用excel可以对数据进行透视、分类、筛选以及计算相关系数等,但是这些操作都需要自己每一步每一步的进行手动操作,而使用spss软件在对数据进行整理时,只需对软件某选项内设置变量条件,系统便自动的进行整理。而且,在学习与应用spss过程中,我了解到应用spss软件只要了解统计分析的原理无需知晓统计方法的各种算法就能得到自己所需要的统计分析结果。另外对于常见的统计方法,spss的命令语句、子命令及选择项的选择绝大部分在软件内的对话框操作完成,我们无需花费大量的时间记忆大量的命令和选择项。在这方面,spss软件的应用可以使我们节省大量时间,而且软件操作比较容易上手,在当今这个时间就是金钱的社会上,我们掌握spss软件的应用,也就是为自己赚取了不少金钱。
另外在与spss的接触中,我逐渐了解到spss软件的强大与方便。spss提供了从简单的统计描述到复杂的多因素统计分析方法,其中有数据的统计分析、统计描述、交叉表分析、二维相关、方差分析、多元回归、因子分析、聚类分析、降维等分析方法。利用这些方法可以得出计算数据和统计图形,看出数据的离散程度、集中趋势和分散程度,单变量的比重,还有对数据进行标准化处理。利用这个软件对问卷数据进行分析是极好的。虽然,这些方法大部分我还是不会使用,能够让我利用并成功分析的方法只有寥寥几种,但是这种简单便捷的操作让我对spss的兴趣却是越来越浓。
这门课程是我们这学期从始至终一直开设的课程,在课堂上我们的导师马杰老师针对各种案例对我们进行讲解,让我们了解spss的各种应用,在课下系内陈主任对我进行指点,让我能够利用多种spss的方法进行数据处理与数据分析。
现在,学期即将结束,同样的这门课程也到了尾期,在这学期学到了很多,并且还有很多没有学到。我们学习时所操作的软件是英文版,这对英语基础不好的我来说是个考验。同时,由于我们所学专业并非必须拥有计算机,导致我们平时能够练习的机会比较少,造成了掌握不牢固,前学后忘现象比较严重。现在呢,很是希望能够把spss的应用熟练操作,并且能把它变为自己的一种本能,使自己在今后的工作与学习中,可以轻松运用。
篇二:spss软件的学习心得
一、什么是spss?为什么要学习spss?
新学期开始时,在信息化教育测量与评价的课程中第一次接触
到spss这个软件,作为本科是计算机专业出身的我,当时只知道spss是一套统计软件,就是一套根据统计学原理所编写出来的统计分析软件,至于统计什么?分析什么?我一无所知,尤其是看到老师推荐的《spss在教育统计中的应用》这本书的时候,就简单的把它理解为用spss软件来统计、分析与教育相关的数据,最终得出想要的结论而已,而现在看来,我当初的想法未免有点简单与无知。下面就来让我们了解一下spss。spss软件是一组专业的、通用的统计软件包,同时它也是一个组合式软件包,兼有数据管理、统计分析、统计绘图和统计报表功能。它广泛用于教育、心理、医学、市场、人口、保险等研究领域,也用于产品质量控制、人事档案管理和日常统计报表等。spss软件对计算机硬件系统的要求较低;对运行的软件环境要求宽松,有各种版本可运行在windows xp、win7系统环境下,spss统计软件采用电子表格的方式输入与管理数据,能方便地从其他数据库中读入数据(如dbase,excel,lotus等)。
我为什么要学习spss呢?其实很简单,一方面,做为一名
研究生,要具备一定的科研能力,如今量化研究的方法大行其道,一切要以事实说话、要以数据说话,有了数据支持的研究才能更容易被认可、被推论。另一方面,根据对aect94定义的理解,教育技术
学研究的对象是学习过程和学习资源,包含大量的偶然现象和非精确现象。因此,要深入研究教育技术现象及其规律,必须运用统计描述、统计分析方法和模糊数学分析方法,才可能使这门学科达到真正完善的地步。教育技术学研究的现象多数是偶然的现象,其变化发展往往具有几种不同的可能性,究竟出现哪一种结果,那是带有偶然性的,是随机的。这类偶然现象是遵循统计规律的,当随机现象是由大量的成份组成,或者随机现象出现大量的次数时,就能体现统计平均规律。我们只有对数据资料作统计处理,才可能可以发现它们的内在规律,掌握现象的特征,检验研究的假设,才能得出准确的、可靠的研究结果。
二、对本spss各章节学习的心得
新课程老师带领下,采取一种新的学习方式,老师讲解了基础部分后,全班同学采取小组分工、协作学习,然后对全班同学进行讲解学习内容,教师进行当堂指导,这种方法改变了同学们的学习态度,同学们不再是课前不预习,课下不复习的状态,每组都有自己的任务,课前有一定的压力,同学间的讨论也明显的增多,例如:一次课下同学们在一起吃饭,有几位同学还在调侃说“两个菜之间用spss进行分析后得出的结果不接受h0假设,也就是两个菜之间不相关”,虽然这只是一个课下的玩笑,但是这也可以体现出对学习的态度的转变。下面就本学期的所学spss的各章节做一下归纳,这些归纳也是基于本人平时在课前预习,课上及课后的一些所思所想,也许会有一些理解上的偏颇在内,但这仅限于心得而已。本学期学习各个章节及分工如下表:
章节名称
的认识
及数据文件的处理
2.数据清理与
基本统计及测
量质量分析
3.t检验
4.方差分析1、2人 3人 7.聚类分析 8.统计图形 2人 1人 2人 6.卡方检验 3人 2人 5.相关分析 3人 分工人数 章节名称 分工人数
可能是由于是同学们第一次讲,万事开头难,压力很大,在大家认为最为简单的内容讲解上,两位同学并没有完全展现出二人实际水平,大家在这一节课上都感觉到很压抑,总的感觉是这节内容很简单,但是内容又很松散,可讲的东西太多,讲的东西多就没有突出重点和难点,所以听过之后就有种无数的碎片漂浮在脑海中一样,很难将知识系统化,课后总结一下无非就是两块,一块是了解spss软件的历史及基本功能,还有一块就是spss软件当中一个模块叫做数据文件的处理,在认识spss软件当中了解到它是一组社会科学统计软件包,诞生于1968年,当时美国的3位大学生开发出了它,经过这么多年的后续开发,spss已经有了很多的版本,具有了更的兼容性、和更友好的操作界面,也在很多的学科领域得到了应用,而在教育中的应用
只是它的一个分支。此外它对硬件的要求也很低,当前一般的电脑都能安装它,安装的过程中也没有什么特殊的方法,傻瓜式的安装方式完全就可以满足。在数据文件的处理方面,主要是要学会定义变量、处理变量两方面;定义变量是要注意根据自己实际采集的数据来定义变量,例如是数值型的变量还是文本型的变量及变量的长度,小数点保留尾数等,总之就是一句话,根据实际调查的数据要求来定义相应变量。变量定义只有只要细心的将实际调查的数据录入到spss当中即可,当然也可以在spss软件之外进行数据编制,可以通过execel等编辑后可以直接导入到spss中。在处理变量模块当中,可以对变量进行添加、删除、拆分与合并等操作,只要根据实际调查数据,细心调整变量,使操作更加简便和明了。
2、数据清理与基本统计及测量质量分析的心得体会
数据的清理与基本统计及测量质量分析由两名同学进行讲解,由于吸取了上节课两名同学的经验,本节讲授的明显好于上节课,这里我也是把它分为两块进行学习,一块是数据的清理,另一块是相关统计理论的学习。在数据清理方面主要学习了奇异数据的检查与清理,在这里本人觉得非常有必要进行数据清理,在实际的调查数据时难免会出现错误或者碰到极为特殊的典型案例,所以这些数据很难符合大众规律,在统计、分析过程中可能会造成分析结果异常,从而直接影响最终的结论。所以觉得非常有必要进行数据检查与清理。而我认为本节的难点不是怎样熟练运用spss软件,而是在第二块中的,相关统计理论的学习,学习这些理论需要一定的数学基础,只有明确这些
理(论如均值、标准误差、中数、众数、全距、四分位等)原理,知其然,知其所以然,这才是关键,在spss中想要实现对数据进行以上分析只需要轻轻点击一下按钮就可以是轻松实现,但是如果不清楚到底用它们来做什么就无从谈起做数据分析了,所以本节内容知道分析原理的重要性要远远大用spss对数据做出相关分析的重要性。总结为一句话“知道它们是做什么的后才会让它们去做该做的工作”。
3、t检验的心得体会
t检验由两名同学讲解,在学习t检验时,首先要明确什么样的数据适合t检验,t检验的结果要说明什么问题?经过学习可以知道,t检验是对两组数据间的平均水平或均数的比较,通过比较可以得出两组数据间的显著性水平,而这两组数据都要符合正态分布,方差具有齐同性,t检验由两种情况,一种配对提检验,要求两组数据不可以独立颠倒顺序,如果颠倒顺序就会改变问题的性质,这种t检验称为配对t检验;另一种情况下的t检验是两组数据可以任意颠倒顺的检验称为独立样本的t检验。但是这两种情况都必须符合最先的要求,即都是符合正态分布,方差都具有齐同性。通过spss的相关操作可以轻松完成检验,但是在检验的过程中必须设置置信区间,一般设置为95%,在设置置信区间时必须要考虑到所做分析的数据,如果像要得到显著性差异的结果则可尽量将置信区间设置小些,如果想要得到不显著差异就要将置信区间甚至大些,本人的理解为若置信区间小,则可以理解为在小范围内是可以相信的,但如果将分析结果的置信区间值调大则说明在很大的范围内这个结果可信,反之则不可信。
社会调查课程学习心得
大四的时候,学过spss相关课程,初步了解到它有非常强大的统计功能,对我们的学习、工作都会有很大的帮助,所以一直想学好这门课程。通过这个学期颜老师的课,让我了解了许多,也学到了spss一些强大的功能,相信这对我以后,会有一定的帮助,至少等以后需要用,要再学习的时候,不至于太陌生。
平时,我们用的较多的数据分析软件是excel。虽然使用excel可以对数据进行透视、分类、筛选以及计算机相关系数等,但是这些操作都需要自己一步一步进行手动操作,而在使用spss软件对数据进行整理时,只需要对软件某选项内设置变量条件,系统便会自动的进行整理。而且,在学习与应用spss过程中,我了解到应用spss软件只要了解统计分析的原理无需知晓统计方法的各种算法就能得到自己所需要的统计分析结果。另外对于常见的统计方法,spss的命令语句、子命令及选择项的选择绝大部分在软件内的对话框操作完成,都无需花费大量的时间记忆大量的命令和选择项。在这方面,spss软件的应用可以使我们节省大量时间,而且软件操作比较容易上手。
另外在与spss的接触中,我逐渐了解到spss软件的强大与方便。spss提供了从简单的统计描述到复杂的多因素统计分析方法,其中有数据的统计分析、统计描述、交叉表分析、方差分析、多元回归、因子分析等分析方法。利用这些方法可以得出计算数据和统计图形,看出数据的离散程度、集中趋势和分散程度,单变量的比重,还有对数据进行标准化处理。利用这个软件对问卷数据进行分析是非常好的。虽然,这些方法大部分我还是不会使用,能够让我利用并成功分析的方法只有寥寥几种,但是这种简单便捷的操作让我对spss的兴趣却是越来越浓。
但在学习spss期间,也遇到了一些问题,主要是后面几章,spss的方差分析、线性回归分析、因子分析等。
在参数检验中我不知道原假设是什么,导致分析的时候不知道该拒绝原假设还是接受原假设,不能分析出统计结果。不会区分单样本t检验和两配对样本t检验的区别,现在懂得了它们都要服从正态分布,基本思想是小概率反证法,反证法思想是先提出假设(检验假设h0),再用适当的统计方法确定假设成立的可能性大小,如果可能性小,则认为假设不成立,否则,还不能认为假设不成立。
在学习方差分析中,开始常常把观测变量和控制变量弄混淆,在分析的时候应分别送入哪个对应框中,如果反了的话会导致结果的不准确。其次,对lsd、bonferroni、tukey、scheffe等方法的使用不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较。宜用bonferroni(lsd)法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用tukey法;其他情况宜用scheffe法。最后,对方差齐性检验、多重比较检验、趋势检验理解不够透彻,在方差检验中,post hoc键有lsd的选项:当方差分析f检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。lsd即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验。
在学习相关分析的过程中,在绘制散点图时,不知道哪个该做横坐标,哪个该做纵坐标,明白了横坐标是解释变量,纵坐标是被解释变量,还有对相关系数的种类分析不熟练等。在学习回归分析的过程中,对dw可检验的含义不理解,不记得对应的dw表示的残差序列的相关性。对解释变量向前筛选、向后筛选、逐步帅选策略不能熟练掌握,特别是对向前向后筛选时到处的结果不会进行分析。
学习因子分析的过程中,对提取出来的因子的实际含义不清晰,不能使因子具有命名解释性等。此外,由于我们所学专业并非必须拥有计算机,导致我们平时能够练习的机会比较少,造成了掌握不牢固,前学后忘现象比较严重。这些问题,也许会随着对spss应用的深入,经验慢慢的积累,而得到解决。很希望能够把spss的应用熟练操作,并且能把它变为自己的一种本能,使自己在今后的工作与学习中,可以轻松运用。
在感慨它的方便与便捷的同时,不得不佩服软件开发者,智商实在是太高了。同时,也感谢颜老师能够对着一脸茫然的我们,耐心讲课,虽然可能没有达到老师授课的预期效果,但我们也绝不是一无所获的!此外,关于同学们说多让学生授课的提议,我觉得也挺好的,这样可以督促大家在课后多下功夫,至少自己授课的那个部分会掌握较好!