定积分不等式证明方法
文件夹
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。
关键词:定积分
不等式
证法
不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证法。
定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与该区间长度的乘积,即将定积分转化为函数来证明不等式。
a0f(x)dx≥af(x)dx.
10,a使
构造辅助函数f(x)证明不等式,首先是做函数将要证结论中的积分上限(下限)换成x,移项使不等式的一边为零,另一边的表达式即是辅助函数。然后再求f’(x),并运用单调性及区间端点值特性证明不等式。
aaf(t)f(x)f(x)f(t)2)dt
与定积分的概念相联系“以直代曲”的“近似代替”的思想,加上积分的几何直观使得不等式的证明变得更加简捷。
例3:证明不等式13sinxdx.
ex(1x2)12esinx1,两端积分得:
ex(1x2)e(1x2)证明:因为1x3时
31sinx131dxx221e(1x)e1x12e
a10exdx1,根据定积分的几何意义知:
(a1)blnxdx1ba10exdxblnbea1b,a1abeblnb.即本题关键在于深刻领悟定积分概念的由来,即求曲边梯形的面积问题推导的四个步骤:分割、取点、作和与求极限,这里充分运用了“近似代替”的几何直观来加以证明。
利用拉格朗日中值定理证明不等式,首先要构造满足中值定理条件的函数和区间,然后进行不等式放缩,再用定积分比较定理、估值定理或函数的绝对值不等式等。
bamf(x)dxm(ba)dx(ba)2.a2b此题运用拉格朗日中值定理简直如行云流水,如果采用其他办法显然比较繁琐。
5.运用taylor公式证明
当已知被积函数f(x)二阶或二阶以上可导且又知最高阶导数的符号时,通常采用泰勒展开式来证明。首先要写出f(x)的泰勒展开式,然后根据题意写出某些点的泰勒展开式,再进行适当的放缩以变成不等式,最后用定积分的性质进行处理。
例6:设f(x)在[a,b]上单调增加,且f“(x)>0,证明
(ba)f(a)<abf(a)f(b)f(x)dx<(ba)
2证明:先证左不等号:(ba)f(a)<
baf(x)dx,x[a,b],x>a,f(x)单调增加,所以f(x)>f(a)
f(t)f(x)f'(x)(tx)因
bbbbaf(x)dx,baf(a)f(b)f(x)dx<(ba)„(2)
2综合(1)、(2),公式的应用在大学数学的学习中是一个绝对的难点,往往很难掌握。一个题目在你用其他方式很难解决时,taylor公式常会给你意想不到的突破。
6.运用柯西—斯瓦兹不等式证明 柯西—斯瓦兹不等式:
例7:设f(x)在[0,1]上有一阶连续导数且f(1)f(0)1,试证:0[f'(x)]dx1.证明:∵f(1)f(0)1210f'(x)dx,又f(1)f(0)1,所以0f'(x)dx1,因f(x)在[0,1]上可导,所以f(x)在[0,1]上连续,2dx[f'(x)]dx(f'(x)dx)1,由柯西—斯瓦兹不等式得:00011211即是0[f'(x)]dx1.柯西—斯瓦兹不等式是大学数学中的又一难点,虽然记忆起来并不困难,但应用是灵活多变的。
7.运用重积分证明
重积分要化为定积分来计算,这是众所周知的事实,但反之定积分的乘积往往又可以化为重积分,将定积分不等式的证明化为重积分不等式来证明,也是一种常见的方法。
=dd3
=ddf3(x)f2(y)(xy)dxdy„(1)
23if(x)f(y)(yx)dxdy„(2)同样
0总的来说,证明不等式是一门艺术,它具有自己独到的技术手法。在此,我研究了上述7种方法来证明不等式,使一些复杂不等式的证明变得更加简洁,也会使一些不等式的证明变得一题多解。
.分析
并作图象如图1所示.因函数在上是凹函数,由函
.例2 求证
.证明 构造函数
2即,所以.例3 证明。
证明 构造函数可知,在区间 上,因,又其函数是凹函数,由图
3个矩形的面积之和小于曲边梯形的面积,图3
即
.所以
.二、型
例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为
(ⅰ)用表示出 ;
.的图象在点(ⅱ)若 在内恒成立,求的取值范围;
(ⅲ)证明:
.图
我们把形如(为常数)
例1(2007年全国高中数学联赛江苏赛区第二试第二题)
已知正整数,求证
1即,因为,所以.所以
.例2求证
.证明构造函数而函数
在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和
小于曲边梯形的面积,图
2即,所以
.例3证明。
证明构造函数知,在区间
上,因,又其函数是凹函数,由图3可
个矩形的面积之和小于曲边梯形的面积,图
3即
.所以
.二、型
例4若,求证:.证明不等式链的左边是通项为前
可当作是某数列的前
列的通项不等式
成立即可.构造函数,因为,作的图象,由图4知,在区间
个矩形面积之间,即,而,故不等式
4例5(2010年高考湖北卷理科第21题)已知函数
.(ⅰ)用表示出(ⅱ)若;
在内恒成立,求的取值范围;
(ⅲ)证明:
列的前项之和,我们也可把右边当作是通项为
左边是通项为的数列的前项之和,则当的数时,此式适合,故只要证当
时,即,也就是要证
积,即
.图5
而
故原不等式成立.,所以,
2025年定积分不等式的证明方法(3篇)
文件夹