智能制造工程 智能制造工作方案(5篇)
为了保障事情或工作顺利、圆满进行,就不得不需要事先制定方案,方案是在案前得出的方法计划。大家想知道怎么样才能写一篇比较优质的方案吗?以下是小编为大家收集的方案范文,欢迎大家分享阅读。
智能制造工程 智能制造工作方案篇一
冯剑龙 1043115257 摘要
本文评述了智能制造技术与智能制造系统,指出了智能制造确系21世纪的制造技术,分析了智能制造在发展中的问题,提出我国智能制造的近期研究重点应为其关键基础技术。
关键词智能制造智能制造技术智能制造系统智能机器 集成化智能化 智能制造系统的研究背景与发展现状
近来年,人们对制造过程的自动化程度赋予了极大的研究热情,这是因为从1870年到1980年间,制造过程的效率提高了20倍,而生产管理效率只提高了1.8~2.2倍,产品设计的效率只提高了1.2倍。这表明体力劳动通过采用自动化技术得到了极大的解放,而脑力劳动的自动化程度(其实质是决策自动化程度)则很低,制造过程中人的因素尚未得到充分的认识,人尚未真正地从复杂的生产过程中解放出来,各种问题求解的最终决策在很大程度上仍依赖于人的智慧。因而,人类群体所面临的众多问题(包括社会问题、生理问题等)在制造过程中都有所反映。面对批量小、品种多、质量高、更新快的产品市场竞争要求以及各种社会因素的综台影响.制造过程的自动化程度的提高面临众多问题,譬如;(1)专家人才的短缺和转移致使一些专门技能不能及时或长久地得到提供;(2)现代制造过程中信息量大而繁杂,传统的信息处理方式已不能满足要求,大量的信息资源需要开发与共享;(3)制造环境柔性要求更大,决策过程更加复杂,决策时问要求更短。各种迹象表明,“我们正处在制造历史上的一个危险时期” 幸运的是,计算机与计算机科学以及其它高技术的发展,通过集成制造技术、人工智能等而发展起来的一种新型制造工程—— 智能制造技术(intelligent manufacturing technology,imt)与智能制造系统(inteliigent manufacturingsystem,ims)使我们有可能走出这个危机,“带来真正的第二次工业革命”。这是因为,制造过程所面临的众多问题的核心是“制造智能(nlanufacturing iteliigence)”和制造技术的“智能化(intellecturallzation)。imt是指在制造工业的各个环节以一种高度柔性与高度集成的方式,通过计算机模拟人类专家的智能活动,进行分析、判断、推理、构思和决策,旨在取代或延伸制造环境中人的部分脑力劳动;并对人类专家的制造智能进行收集、存贮、完善、共享、继承与发展。未来工业生产的基本特征应该是知识密集型.制造自动化的根本是决策自动化。目前,imt~ims的研究正迅速受到众多国家的政府、工业界和科学家们的广泛重视,研究方向从最初的“人工智能在制造领域中的应用”发展到今天的ims,研究课题涉及的范围由最初仅一个企业内部的市场分析、产品设计、生产计划、制造加工、过程控制、材料处理、信息管理、设备维护等技术型环节的自动化.发展到今天的面向世界范围内的整个制造环境的集成化与自组织能力+包括制造智能处理技术、自组织加工单元、自组织机器人、智能生产管理信息系统、多级竞争式控制网络、全球通讯与操作网等。总之,智能制造是21世纪的制造技术,作为其特征的双i(integration& intelligence)将是21世纪制造业赖以行进的基本轨道。从更深刻的意义上讲,智能制造是从信息时代走向智能时代面临的第一个严重任务。存在的问题
总的说来,目前ims的研究仍处在人工智能在制造领域中应用的阶段,研究课题涉及到市场分析、产品设计、制造过程控制、材料处理、信息管理、设备维护等众多方面,取得了丰硕的成果.开发了种类繁多的面向特定领域的专家系统、基于知识的系统和智能辅助系统,甚至智能加工工作站(imw),形成了一系列“智能化孤岛”(islands of intelligence)。这中间包括cims研究中所取得的有关进展然而,随着研究与应用工作的深入,人们逐渐地认识到自动化程度的进一步提高依赖制造系统的自组织能力,研究工作还面临着一系列理论、技术和社会问题,问题的核心是“智能化”。一般说来,现代工业生产作为一个有机的整体要受技术(包括生产系统)、人(包括间接影响生产过程的社会群体)和经济(包括市场竞争和社会竞争)-方面因素的制约。从技术的角度来看,对于一个企业来说,市场预测、生产决策、产品设计、原料订购与处理、制造加工、生产管理、原料产品的储运、产品销售、研究与发展等环节彼此相互影响,构成产品生产的全过程。该过程的自动化程度取决于各环节的集成自动化(integrated automatlon)水平,而生产系统的自组织能力取决于各环节的集成智能(inte—grated intelligence)水平。目前,尚缺乏这种“集成”制造智能的技术,这也是目前“并行工程”的研究重点。由日本提出的国际合作研究计划对ims的解释可看出,ims的研究包括三个基本方面:智能活动、智能机器和两者的有机融合技术,其中智能活动是问题的核心。在ims研究的众多基础技术中.制造智能处理技术(manufacturing in—telligence processing technology)是最为关键和追切需要研究的问题之一,因为它负责各环节的制造智能的集成和生成智能机器的智能活动。从人的因素方面来看,其一,企业内部负责各个环节的专家和技术人员有着各自不同的知识背景和解决问题的策略,他们应该“坐”在一起,通过相互之间充分的合作、协商与理解,“并行”地开睫制造过程中各环节的工作,把以后可能出现的“隐患”和“反复”降低到最低程度。其二,人们参与制造过程的智能行为和知识存在着多种层次水平、多种类型。因而要采用多种表示方式。其三,参与制造过程的群体,作为社会中的一子集,受社会发展变更的影响,这种影响都将对制造过程产生既有积极又有消极的作用 最后.人与人之间存在生活、语言、社会背景等方面的差别。总之,人的因素对现代生产的自动化程度有着关键作用。事实证明,人的因素是ims中制造智能的重要来源。从经济因素来看,它包括三个方面:第一,ims系统的主要目标之一是全面提高制造过程的生产与经济效益,它将把制造过程自动化的概念更新和拓宽到“集成化”和“智能化”的高度,从而具有更强的市场竞争能力 但如何设定和评价ims的各项经济性指标和性能则是一个问题。第二,目前,在工业发达国家普遍存在着劳动力昂贵,所占生产成本的比例越来越高的问题。从当前的经济利益出发,大量的制造企业被转移至发展中国家,致使生产技术和劳动者因素等方面受到牵制,存在丧失他们产品市场竞争力的危险这也是智能制造国际合作研究计划提出的重要原因之一。方向与课题
根据国内现有的工作基础和国家的需要,以及imt&ims研究与开发工作的特点,我们认为近期的研究点应该放在imt&ims的关键基础技术上,它主要包括以下内容:
3.1 智能制造系统理论基础与设计技术ims的概念正式提出至今仅二三年时间。作为制造工程中的一个全新的概念,ims理论基础与体系尚未完全形成.它的精确内涵和设计技术亟待进一步研究,具体研究内容应包括:
3.1.1 体系结构与发展战略 需要建立ims统一的概念体系,研究ims的系统组成和发展方向以及跟踪国际上该领域的研究前沿
3.1.2 开发环境与设计方法学ims的开发与设计方法将有别于现有任何制造系统的设计方法,因为ims是面向整个制造过程的系统和各个环节的“智能化”的 因此.有必要研究ims的设计策略和开发环境(包括开发语言、操作系统、开发工具等)必须强调ims设计过程的标准化、模块化和通用化。
3.1.3 评价技术研究制造过程中的设计评价、生产评价、材料评价、管理评价、市场评价、经济评价、报价评价和功能评价等问题。
3.2 制造智能理论及处理技术现代工业生产作为一个有机整体不仅是指各制造环节之间存在的技术型联系,而且还表现在人类专家的制造智能的统一体特性方面。制造智能理论及处理技术就是要研究整个制造环境中的各种智能源的开发、描述、集成、共享与处理,最后生成智能机器的智能活动,具体研究内容包括: 3.2.1 制造环境的描述与建模研究描述制造环境的一致性概念体系、制造过程建模,影响制造过程的多因素分析与不确定性处理。
3.2.2 制造智能处理技术重点研究制造智能源的开发与获取、制造智能的表示、制造智能的集成与共享
3.2.3 智能活动的生成与融合研究智能活动的生成策略,智能活动的机器化技术。3.3 智能制造单元技术的集成近10年来,人工智能在制造领域中的应用研究取得较大进展,建立了一些智能制造单元技术。为了应用于实际制造过程和面向21世纪制造工业,这些单元技术除了需要进一步完善与发展外,更重要的是研究如何集成这些单元技术。
3.3.1 并行智能设计并行工程方法学这一概念是1986年由美国国防部定义,并首先应用于美国军事武器系统开发计剞dos cals的。.为了制造过程的设计阶段能有效地模仿由来自各环节制造专家组成的专家组(expeit team)的智能行为,集成和共享各环节与各方面的制造智能,并行地开展产品环节的设计工作,必须研究并行智能设计的支撑环境、产品描述的统一模型、设计智能交互和并行智能设计方法学。
3.3.2 生产过程的智能调度、规划、仿真与优化现代生产过程要面临多信息源、多因素、多对象的及时处理问题,生产过程的调度与规划中的智能决策问题的研究是迫在眉睫的。仿真与优化是实现设计和过程评估的有效途径。目前,更强调对设计、制造、装配、使用、维修等过程的优化与动态仿真。3.3 产品质量信息的智能处理系统研究整个制造过程的“全质量(total quality)模型和建立相应的质量数据库,研究质量状态的智能决策和质量过程的智能控制.3.3.4 制造过程与系统的智能监视、诊断、补偿与控制研究面向在强干扰、多因素条件下监视与诊断模型,研究制造过程的动态辨识与自适应技术。
3.3.5 生产与经营管理的智能决策系统研究多因素、多目标智能决策模型,研究生产过程的实时跟踪技术,研究产品市场评估与预测模型。
3.4 知识库系统与网络技术知识库系统与信息网络技术是制造过程的系统与各环节“集成智能化”的支撑,在imt&ims研究中占有重要地位。
3.4.1 分布式异构联想知识库系统研究知识库异构、知识库分布式策略与维修、知识库联想和分布数据库技术。
3.4.2 信息控制与网络通讯技术研究ims中各种信息的交换接el、网络通讯技术、系统操作控制策略。
3.5 智能机器的设计智能机器是ims中模仿人类专家智能活动的工具之一,是新一代的制造工具,因而,研究智能机器的设计方法及其相关技术将有划时代的意义。
3.5.1 机器人智能技术智能机器人将在ims中占有重要的地位,主要体现在机器的视觉和机器^控制两个方面。有必要研究智能机器眼(视觉)、信息感知与智能传感器、智能机器手(控制)和智能机器的自适应定位与夹具设计等技术。
3.5.2 机器自学习与自维护技术研究智能机器的自适应学习模型,系统误差的自动恢复与维护技术。
3.5.3 智能制造单元机的设计与制造研究智能制造单元机的结构组成与设计方法、新型材料的应用技术。
3.6 制造中人的因素ims的宗旨之一就是减轻人类制造专家的艰苦的脑力劳动负担,因此.与脑力劳动有密切联系的制造中人的因素理应受到充分的重视,研究内容包括:
3.6.1 人一系统柔性交互技术研究人一系统柔性、联想、容错交互模型以及交互环境。3 6.2 未来制造环境的设计研究人在未来制造环境中的地位和作用以及未来舒适、友好的制造环境的设计。
3.6.3 人才培养与教学系统研究面向imt&ims的^才培养计划.研制教学示范系统。
智能制造工程 智能制造工作方案篇二
智能制造工程实施指南
(2016-2020)
为贯彻落实《中国制造2025》,组织实施好智能制造工程(以下简称“工程”),特编制本指南。
一背景
自国际金融危机发生以来,随着新一代信息通信技术的快速发展及与先进制造技术不断深度融合,全球兴起了以智能制造为代表的新一轮产业变革,数字化、网络化、智能化日益成为未来制造业发展的主要趋势。世界主要工业发达国家加紧谋篇布局,纷纷推出新的重振制造业国家战略,支持和推动智能制造发展,以重塑制造业竞争新优势。为加速我国制造业转型升级、提质增效,国务院发布实施《中国制造2025》,并将智能制造作为主攻方向,加速培育我国新的经济增长动力,抢占新一轮产业竞争制高点。
当前,我国制造业尚处于机械化、电气化、自动化、信息化并存,不同地区、不同行业、不同企业发展不平衡的阶段。发展智能制造面临关键技术装备受制于人、智能制造标准/软件/网络/信息安全基础薄弱、智能制造新模式推广尚未起步、智能化集成应用缓慢等突出问题。相对工业发达国家,推动我国制造业智能转型,环境更为复杂,形势更为严峻,任务更加艰巨。
《中国制造2025》明确将智能制造工程作为政府引导推动的五个工程之一,目的是更好地整合全社会资源,统筹兼顾智能制造各个关键环节,突破发展瓶颈,系统推进技术与装备开发、标准制定、新模式培育和集成应用。加快组织实施智能制造工程,对于推动《中国制造2025》十大重点领域率先突破,促进传统制造业转型升级,实现制造强国目标具有重大意义。
二总体要求
加快贯彻落实《中国制造2025》总体战略部署,牢固树立创新、协调、绿色、开放、共享的新发展理念,以构建新型制造体系为目标,以推动制造业数字化、网络化、智能化发展为主线,坚持“统筹规划、分类施策、需求牵引、问题导向、企业主体、协同创新、远近结合、重点突破”的原则,将制造业智能转型作为必须长期坚持的战略任务,分步骤持续推进。“十三五”期间同步实施数字化制造普及、智能化制造示范,重点聚焦“五三五十”重点任务,即:攻克五类关键技术装备,夯实智能制造三大基础,培育推广五种智能制造新模式,推进十大重点领域智能制造成套装备集成应用,持续推动传统制造业智能转型,为构建我国制造业竞争新优势、建设制造强国奠定扎实的基础。
(一)基本原则
坚持统筹规划、分类施策。统筹兼顾智能制造各个关键环节,加强构建新型制造体系的顶层设计与规划。针对我国制造业机械化、电气化、自动化、信息化并存,不同地区、行业、企业发展不平衡的局面,分类指导、并行推进,推动优势领域率先突破,促进传统制造业智能转型。
坚持需求牵引、问题导向。瞄准制造业数字化、网络化、智能化的发展趋势,面向重点领域率先突破和传统制造业智能转型迫切需求,针对我国发展智能制造面临的关键技术装备受制于人、智能制造标准/软件/网络/信息安全基础薄弱等突出问题,系统推进技术与装备开发、标准制定、新模式培育和集成应用。
坚持企业主体、协同创新。充分调动企业开展智能制造的积极性和内生动力,突出企业开展集成创新、工程应用、产业化与试点示范的主体作用。发挥企业、研究机构、高等院校等各方面优势,协同推进关键技术装备、软件、智能制造成套装备等的集成创新。
坚持远近结合、重点突破。充分认识推进智能制造是一项需要多方面力量长期共同努力的复杂系统工程,要立足现状、着眼长远,做好顶层设计,分阶段实施,集中力量突破一批需求迫切、带动作用强的关键技术装备、智能制造成套装备,提升智能制造支撑能力,在基础条件好的领域推进集成应用和试点示范。
(二)总体目标
工程分为两个阶段实施:“十三五”期间通过数字化制造的普及,智能化制造的试点示范,推动传统制造业重点领域基本实现数字化制造,有条件、有基础的重点产业全面启动并逐步实现智能转型;“十四五”期间加大智能制造实施力度,关键技术装备、智能制造标准/工业互联网/信息安全、核心软件支撑能力显著增强,构建新型制造体系,重点产业逐步实现智能转型。
“十三五”期间工程具体目标如下:
1、关键技术装备实现突破。高档数控机床与工业机器人、增材制造装备性能稳定性和质量可靠性达到国际同类产品水平,智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备基本满足国内需求,具备较强竞争力,关键技术装备国内市场满足率超过50%。
2、智能制造基础能力明显提升。初步建立基本完善的智能制造标准体系,完成一批急需的国家和行业重点标准;具有知识产权的智能制造核心支撑软件国内市场满足率超过30%;初步建成ipv6和4g/5g等新一代通信技术与工业融合的试验网络、标识解析体系、工业云计算和大数据平台及信息安全保障系统。
3、智能制造新模式不断成熟。离散型智能制造、流程型智能制造、网络协同制造、大规模个性化定制、远程运维服务等五种智能制造新模式不断丰富完善,有条件、有基础的行业实现试点示范并推广应用,建成一批智能车间/工厂。试点示范项目运营成本降低30%、产品生产周期缩短30%、不良品率降低30%。
4、重点产业智能转型成效显著。有条件、有基础的传统制造业基本普及数字化,全面启动并逐步实现智能转型,数字化研发设计工具普及率达到72%,关键工序数控化率达到50%;十大重点领域智能化水平显著提升,完成60类以上智能制造成套装备集成创新。
三重点任务
(一)攻克关键技术装备
针对实施智能制造所需关键技术装备受制于人的问题,聚焦感知、控制、决策、执行等核心关键环节,依托重点领域智能工厂、数字化车间的建设以及传统制造业智能转型,突破高档数控机床与工业机器人、增材制造装备、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备五类关键技术装备,开展首台首套装备研制,提高质量和可靠性,实现工程应用和产业化。
专栏1 关键技术装备研制重点
高档数控机床与工业机器人。数控双主轴车铣磨复合加工机床;高速高效精密五轴加工中心;复杂结构件机器人数控加工中心;螺旋内齿圈拉床;高效高精数控蜗杆砂轮磨齿机;蒙皮镜像铣数控装备;高效率、低重量、长期免维护的系列化减速器;高功率大力矩直驱及盘式中空电机;高性能多关节伺服控制器;机器人用位置、力矩、触觉传感器;6-500kg级系列化点焊、弧焊、激光及复合焊接机器人;关节型喷涂机器人;切割、打磨抛光、钻孔攻丝、铣削加工机器人;缝制机械、家电等行业专用机器人;精密及重载装配机器人;六轴关节型、平面关节(scara)型搬运机器人;在线测量及质量监控机器人;洁净及防爆环境特种工业机器人;具备人机协调、自然交互、自主学习功能的新一代工业机器人。
增材制造装备。高功率光纤激光器、扫描振镜、动态聚焦镜及高品质电子枪、光束整形、高速扫描、阵列式高精度喷嘴、喷头;激光/电子束高效选区熔化、大型整体构件激光及电子束送粉/送丝熔化沉积等金属增材制造装备;光固化成形、熔融沉积成形、激光选区烧结成形、无模铸型、喷射成形等非金属增材制造装备;生物及医疗个性化增材制造装备。
智能传感与控制装备。高性能光纤传感器、微机电系统(mems)传感器、多传感器元件芯片集成的mco芯片、视觉传感器及智能测量仪表、电子标签、条码等采集系统装备;分散式控制系统(dcs)、可编程逻辑控制器(plc)、数据采集系统(scada)、高性能高可靠嵌入式控制系统装备;高端调速装置、伺服系统、液压与气动系统等传动系统装备。
智能检测与装配装备。数字化非接触精密测量、在线无损检测系统装备;可视化柔性装配装备;激光跟踪测量、柔性可重构工装的对接与装配装备;智能化高效率强度及疲劳寿命测试与分析装备;设备全生命周期健康检测诊断装备;基于大数据的在线故障诊断与分析装备。
智能物流与仓储装备。轻型高速堆垛机;超高超重型堆垛机;高速智能分拣机;智能多层穿梭车;智能化高密度存储穿梭板;高速托盘输送机;高参数自动化立体仓库;高速大容量输送与分拣成套装备、车间物流智能化成套装备。
(二)夯实智能制造基础
重点围绕智能制造标准滞后、核心软件缺失、工业互联网基础和信息安全系统薄弱等瓶颈问题,构建基本完善的智能制造标准体系,开发智能制造核心支撑软件,建立高效可靠的工业互联网基础和信息安全系统,形成智能制造发展坚实的基础支撑。
1、构建国家智能制造标准体系。制定并发布《国家智能制造标准体系建设指南》,开展智能制造的基础共性、关键技术、重点行业标准与规范的研究,构建标准试验验证平台(系统),进行技术规范、标准全过程试验验证,在制造业各个领域进行全面推广,形成智能制造强有力的标准支撑。
专栏2 智能制造重点标准
基础共性标准与规范。术语定义、参考模型、元数据、对象标识注册与解析等基础标准;体系架构、安全要求、管理和评估等信息安全标准;评价指标体系、度量方法和实施指南等管理评价标准;环境适应性、设备可靠性等质量标准。关键技术标准与规范。工业机器人、工业软件、智能物联装置、增材制造、人机交互等装备/产品标准;体系架构、互联互通和互操作、现场总线和工业以太网融合、工业传感器网络、工业无线、工业网关通信协议和接口等网络标准;数字化设计仿真、网络协同制造、智能检测、智能物流和精准供应链管理等智能工厂标准;数据质量、数据分析、云服务等工业云和工业大数据标准;个性化定制和远程运维服务等服务型制造标准;工业流程运行能效分析软件标准。
重点行业标准与规范。以典型离散行业的数字化车间集成应用和流程行业智能工厂集成应用为代表的十大重点领域行业标准与规范。
2、提升智能制造软件支撑能力。针对智能制造感知、控制、决策、执行过程中面临的数据采集、数据集成、数据计算分析等方面存在的问题,开展信息物理系统的顶层设计,研发相关的设计、工艺、仿真、管理、控制类工业软件,推进集成应用,培育重点行业整体解决方案能力,建设软件测试验证平台。
专栏3 智能制造核心支撑软件开发重点
设计、工艺仿真软件。计算机辅助类(cax)软件、基于数据驱动的三维设计与建模软件、数值分析与可视化仿真软件、模块化设计工具以及专用知识、模型、零件、工艺和标准数据库等。
工业控制软件。高安全、高可信的嵌入式实时工业操作系统,智能测控装置及核心智能制造装备嵌入式组态软件。
业务管理软件。制造执行系统(mes)、企业资源管理软件(erp)、供应链管理软件(scm)、产品全生命周期管理软件(plm)、商业智能软件(bi)等。
数据管理软件。嵌入式数据库系统与实时数据智能处理系统、数据挖掘分析平台、基于大数据的智能管理服务平台等。
系统解决方案。生产制造过程智能管理与决策集成化管理平台、跨企业集成化协同制造平台,以及面向工业软件、工业大数据、工业互联网、工控安全系统、智能机器、智能云服务平台等集成应用的行业系统解决方案,装备智能健康状态管理与服务支持平台。
测试验证平台。设计、仿真、控制、管理类工业软件稳定性、可靠性测试验证平台。重点行业cps关键技术、设备、网络、应用环境的兼容适配、互联互通、互操作测试验证平台。
3、建设工业互联网基础和信息安全系统。研发融合新型技术的工业互联网设备与系统,构建工业互联网标识解析系统及试验验证平台,在重点领域制造企业建设试验网络并开展应用创新。研发安全可靠的信息安全软硬件产品,搭建基于可信计算的信息安全保障系统与试验验证平台,建立健全工业互联网信息安全审查、检查和信息共享机制,在有条件的企业进行试点示范。
专栏4 工业互联网基础和信息安全系统建设重点
工业互联网基础。基于ipv6、4g/5g移动通信、短距离无线通信和软件定义网络(sdn)等新型技术的工业互联网设备与系统;核心信息通信设备;工业互联网标识解析系统与企业级对象标识解析系统;工业互联网测试验证平台建设;工业互联网标识与解析平台建设;基于ipv6、软件定义网络(sdn)等新技术融合的工业以太网建设;覆盖装备、在制产品、物料、人员、控制系统、信息系统的工厂无线网络建设试点;工业云计算、大数据服务平台建设。
信息安全系统。基于opc-ua的安全操作平台、可信计算支撑系统、可信软件参考库、工业控制网络防护、监测、风险分析与预警系统、信息安全数字认证系统,工业防火墙、工业通讯网关、工业软件脆弱性分析产品、工控漏洞挖掘系统、工控异常流量分析系统、工控网闸系统、安全可靠的工业芯片、网络交换机;工业互联网安全监测平台、信息安全保障系统验证平台和仿真测试平台、攻防演练试验平台、在线监测预警平台、通讯协议健壮性测试验证平台、工业控制可信芯片试验验证平台、工控系统安全区域隔离、通信控制、协议识别与分析试验验证平台的建设,建立工业信息安全常态化检查评估机制、信息安全测评标准与工具;工业控制网络安全监测、信息安全防护与认证系统建设试点,系统边界防护、漏洞扫描、访问控制、网络安全协议以及工业数据防护、备份与恢复技术产品的应用示范。
(三)培育推广智能制造新模式
针对原材料工业、装备工业、消费品工业等传统制造业环境恶劣、危险、连续重复等工序的智能化升级需要,持续推进智能化改造,在基础条件好和需求迫切的重点地区、行业中选择骨干企业,推广数字化技术、系统集成技术、关键技术装备、智能制造成套装备,开展新模式试点示范,建设智能车间/工厂,重点培育离散型智能制造、流程型智能制造、网络协同制造、大规模个性化定制、远程运维服务,不断丰富成熟后实现全面推广,持续不断培育、完善和推广智能制造新模式,提高传统制造业设计、制造、工艺、管理水平,推动生产方式向柔性、智能、精细化转变。
专栏5 智能制造新模式关键要素
离散型智能制造。车间总体设计、工艺流程及布局数字化建模;基于三维模型的产品设计与仿真,建立产品数据管理系统(pdm),关键制造工艺的数值模拟以及加工、装配的可视化仿真;先进传感、控制、检测、装配、物流及智能化工艺装备与生产管理软件高度集成;现场数据采集与分析系统、车间制造执行系统(mes)与产品全生命周期管理(plm)、企业资源计划(erp)系统高效协同与集成。
流程型智能制造。工厂总体设计、工艺流程及布局数字化建模;生产流程可视化、生产工艺可预测优化;智能传感及仪器仪表、网络化控制与分析、在线检测、远程监控与故障诊断系统在生产管控中实现高度集成;实时数据采集与工艺数据库平台、车间制造执行系统(mes)与企业资源计划(erp)系统实现协同与集成。
网络协同制造。建立网络化制造资源协同平台,企业间研发系统、信息系统、运营管理系统可横向集成,信息数据资源在企业内外可交互共享。企业间、企业部门间创新资源、生产能力、市场需求实现集聚与对接,设计、供应、制造和服务环节实现并行组织和协同优化。
大规模个性化定制。产品可模块化设计和个性化组合;建有用户个性化需求信息平台和各层级的个性化定制服务平台,能提供用户需求特征的数据挖掘和分析服务;研发设计、计划排产、柔性制造、物流配送和售后服务实现集成和协同优化。
远程运维服务。建有标准化信息采集与控制系统、自动诊断系统、基于专家系统的故障预测模型和故障索引知识库;可实现装备(产品)远程无人操控、工作环境预警、运行状态监测、故障诊断与自修复;建立产品生命周期分析平台、核心配件生命周期分析平台、用户使用习惯信息模型;可对智能装备(产品)提供健康状况监测、虚拟设备维护方案制定与执行、最优使用方案推送、创新应用开放等服务。
(四)推进重点领域集成应用
聚焦《中国制造2025》十大重点领域,开展基于智能制造标准、核心支撑软件、工业互联网基础与信息安全系统的关键技术装备和先进制造工艺的集成应用,以系统解决方案供应商、装备制造商与用户联合的模式,开发重点领域所需智能制造成套装备,实现推广应用与产业化,支撑重点领域率先突破和传统制造业智能化改造。
专栏6 十大领域智能制造成套装备集成创新重点
电子信息领域。消费类电子整机产品制造成套装备;极大规模集成电路(芯片)制造工艺装备;集成电路先进封装与测试成套装备;低温共烧陶瓷(ltcc)、薄膜等先进基板制造成套装备;表面贴装成套装备;高密度混合集成模块、微机电系统(mems)器件组装成套装备;新型元器件(片式电子器件、高性能元件、电池、高亮度半导体照明芯片和器件、大功率半导体器件)制造成套装备;新型平板显示制造成套装备;高效太阳能电池片制造成套装备;以碳化硅(sic)、氮化镓(gan)为代表的宽禁带半导体电力电子器件制造成套工艺与装备。
高档数控机床和机器人领域。高精度床身箱体类零件智能加工成套设备;高精度丝杠与导轨、高速主轴、长寿命模具、高压大流量泵阀等核心零部件制造所需的精密加工与成形制造成套装备;微纳加工、电加工与激光特种加工成套装备;机器人减速器、伺服电机精密制造成套装备。
航空航天装备领域。航空航天钣金件高效加工与成形成套装备;难变形金属件智能化激光焊接、超塑/扩散连接成套装备;大型复合材料机身和机翼、航天复合材料构件自动化数字化铺放、成形、加工和检测成套装备;飞机、火箭整机、发动机及大部件数字化柔性对接与装配成套装备;发动机空气动力性能智能试验平台;整机结构疲劳及承载力多通道智能化测试试验成套装备;飞机整机渐变自动喷漆成套装备;固体发动机装药界面粘接质量无损检测装备。
海洋工程装备及高技术船舶领域。柔性可重构工装、高功率激光复合焊接(fcb)、多点压力成形船舶分段流水线智能化成套装备;船体外板涂装、环缝涂装、典型结构智能焊接、大船舱自动化柔性对接与装配、大尺寸智能测量与定位、舵浆高效定位与安装等总装建造关键成套工艺装备;大型柴油机缸体、曲轴、齿轮、叶片智能加工成套装备;水深超过1000米饱合潜水焊接成套装备;海工装备海上检测试验成套装备;海底油气输送管道自动化焊接与涂装成套装备;海上大型压力容器智能化焊接成套装备。
先进轨道交通装备领域。铝/镁合金、不锈钢轻量化车身的高效激光及激光复合焊、搅拌摩擦焊新型成套装备;大型铝合金板材超塑成形成套装备;复合材料车身快速成形成套装备;大功率高可靠柴油机核心部件制造成套装备;30吨轴重以上电力机车核心部件制造成套装备;120km/h以上高载客能力高加减速轻量化城轨列车及250km/h、350km/h以上高速列车用齿轮、轴承、轮对、转向架、制动系统等轻量化加工与成形成套装备。
节能与新能源汽车领域。轻量化多材质混合车身智能制造成套装备、车用碳纤维复合材料构件高效低成本成形成套装备;基于机器人的伺服冲压/模压成形、高效连接(激光焊、铆、粘)、节能环保型涂装等智能成形成套装备;汽车发动机、变速箱等高效加工与近净成形成套装备、柔性装配与试验检测装备;柴油高压共轨、汽车abs/esp、新能源汽车机电耦合系统等精密加工、成形、在线检测与装配成套装备;动力电池数字化制造成套装备。
电力装备领域。百万千瓦级核电机组主设备智能化加工与成形成套装备;大型发电设备用定转子、转轮、叶片、锅炉受压部件等先进加工与机器人焊接成套装备;超特高压输变电关键设备智能制造及装配成套装备;智能电网及用户端关键设备精密制造及装配成套装备;大功率电力电子器件、高温超导材料、大规模储能、新型电工材料、高压电容器、高压电瓷和绝缘子等关键元器件、材料的智能制造成套装备;在线检测、远程诊断与可视化装配成套装备。
农业装备领域。联合收割机底盘、脱离滚筒等部件激光焊接、铆接与涂装成套装备;土壤工作、采收作业等关键部件智能冲压、模压成形、表面工程等成套装备;农产品智能拣选、分级成套装备;食品高黏度流体灌装智能成套装备;多功能pet(聚对苯二甲酸乙二醇酯)瓶饮料吹灌旋一体化智能成套设备;液态食品品质无损检测、高速无菌灌装成套设备。
新材料领域。先进钢铁洁净化、绿色化制备及高效精确成形成套装备;有色金属材料低能耗短流程、高性能大规格制备成套装备及低成本化精密加工与高效成形成套装备;先进化工材料高效合成与制备装备;先进轻工材料的绿色高效分离、功能化和高值化加工制备、改性成套装备;先进纺织材料的材料设计、加工、制造一体化成套工艺与装备;特种合金、高性能碳纤维、先进半导体等关键战略材料的稳定批量制备与高效低成本加工成套装备;增材制造材料、石墨烯、超导、智能仿生与超材料等中小批量纯化制备、调控与分离成套装备。
生物医药及高性能医疗器械领域。应用过程分析技术、自动化和信息化程度高、满足高标准gmp要求的无菌原料药制造成套设备;注射剂高速灌装联动智能成套装备;高速口服固体制剂智能成套设备;中药高效分离提取智能成套装备;缓控释等高端剂型智能生产成套设备;高速智能包装设备;数字化影像设备;全自动生化免疫检验成套装备;远程监护和远程诊疗设备。
四组织实施
1、充分发挥市场主体作用。尊重市场经济规律,坚持需求导向,充分发挥企业开展智能制造的积极性,突出企业开展集成创新、工程应用、产业化、试点示范的主体地位,支持产学研用合作和组建产业创新联盟,联合推动智能制造新模式应用。
2、充分调动多方积极性。鼓励各地方出台支持企业实施智能制造的相关支持政策。充分发挥行业协会、产业创新联盟等社会组织的积极作用,搭建行业协同创新平台、产业供需对接平台及信息服务平台。
3、创新资金支持方式。充分调动社会资源推进产业化和推广应用,加强产融对接,鼓励产业投资基金、创业投资基金和其他社会资本投入,共同支持智能制造的发展。
4、分类遴选项目承担单位。试点示范类项目的承担单位,由相关企业根据申报通知自愿申报,通过地方及行业推荐、专家评审、公示等环节遴选确定。智能制造专项项目的承担单位,由牵头部门发布专项指南,符合条件的企业自愿申报,经过地方及行业推荐、专家评审,牵头部门联合审议共同确定。其他专项、计划项目的承担单位,按照相应的管理办法进行确定。
五保障措施
(一)加强统筹协调
加强顶层设计和组织协调,建立由工业和信息化部牵头,发展改革委、科技部、财政部、国防科工局、中国工程院、商务部参加的部门联席会议制度。设立智能制造工程专家咨询组,为把握技术发展方向提供咨询建议。滚动制定年度传统制造业智能转型推进指南,指导企业实施智能制造。有效统筹中央、地方和其他社会资源,做好部门间协调,考虑地方及行业差异,聚焦工程重点任务,加强与国家其他重点工程、科技计划的衔接,确保工程各项任务的落实。
(二)健全技术创新体系
支持现有国家工程(技术)研究中心、国家重点实验室、国家认定企业技术中心,加大智能制造研究力度。支持产学研用合作和组建产业创新联盟,开展智能制造技术与装备的创新与应用。加大对智能制造试点示范企业的培育与支持,加快培育系统解决方案供应商。建立智能制造知识产权运用保护体系,实施重大关键技术、工艺和关键零部件专利布局,形成一批产业化导向的关键技术专利组合。在集成创新、工程应用、产业化等支持产学研用市场主体建立知识产权联合保护、风险分担、开放共享的协同运用机制。强化企业质量主体责任,加强质量技术攻关、品牌培育。
(三)加大财税金融支持力度
充分利用现有渠道,加大中央财政资金对智能制造的支持力度。完善和落实支持创新的政府采购政策。推进首台(套)重大技术装备保险补偿机制试点。对符合条件的智能制造企业,可享受相关软件产业政策。鼓励企业发起设立按市场化方式运作的各类智能制造发展基金。加强政府、企业信息与金融机构的共享,研究建立产融对接新模式,引导和推动金融机构创新符合企业需求的产品和服务方式。对涉及科技研发相关内容,如确需中央财政支持的,可通过优化整合后的中央财政科技计划(专项、基金等)统筹考虑予以支持。
(四)大力推进国际合作
在智能制造标准制定、知识产权等方面广泛开展国际交流与合作,不断拓展合作领域。支持国内外企业及行业组织间开展智能制造技术交流与合作,做到引资、引技、引智相结合。鼓励跨国公司、国外机构等在华设立智能制造研发机构、人才培训中心,建设智能制造示范工厂。探索利用产业基金等渠道支持智能制造关键技术装备、成套装备等产能走出去,实施海外投资并购。
(五)注重人才培养
组织实施智能制造人才培养推进行动,系统推进智能制造领域领军人才、创新团队、人才示范基地、人才培训平台建设。鼓励有条件的高校、院所、企业建设智能制造实训基地,培养满足智能制造发展需求的高素质技术技能人才。支持高校开展智能制造学科体系和人才培养体系建设。建立智能制造人才需求预测和信息服务平台。建立智能制造优秀人才表彰制度。
智能制造工程 智能制造工作方案篇三
附件1 2015年智能制造专项实施指南
一、智能制造综合标准化试验验证
(一)实施内容
1、基础共性标准试验验证
开展智能制造基础共性标准试验验证,包括:标准体系试验验证;术语和定义;语义化描述和数据字典;参考模型;集成与互联互通;功能安全和工业信息安全要求和评估;人机交互与协同安全;智能制造评价指标体系及成熟度模型;智能工厂(车间)通用技术要求;工业控制网络/工业物联网技术要求;系统能效评估方法;工业云服务模型、工业大数据服务、工业互联网架构,搭建基础共性标准试验验证体系。
2、关键应用标准试验验证
重点领域智能制造新模式关键应用标准试验验证,包括:重点行业的智能工厂(车间)参考模型;通用技术条件(技术要求、试验方法、试验大纲);评价标准及方法;工艺参考模型;一致性和互操作要求;工业安全要求和评估方法;搭建关键标准试验验证体系。
(二)考核指标
1、技术规范或标准全过程试验验证,形成企业标准草案/行业标准草案/国家标准草案/国际标准草案;
2、建成部件和系统级试验验证测试体系;
3、在重点领域智能制造新模式中进行应用。
二、重点领域智能制造新模式应用
(一)新一代信息技术产品智能制造新模式
1、实施内容
重点支持智能光电传感器、智能感应式传感器、智能环境检测传感器以及移动终端等新一代信息产品智能制造新模式应用,实现新一代信息技术产品设计、工艺、制造、检验、物流等全生命周期的智能化要求。
2、考核指标 1)综合指标:
传感器智能制造新模式:生产效率提高20%以上,运营成本降低20%以上,产品研制周期缩短30%以上,产品不良品率降低20%以上,能源利用率提高10%以上。
移动终端智能制造新模式:生产效率提高20%以上,运营成本降低20%以上,产品研制周期缩短30%以上,产品不良品率降低30%以上,能源利用率提高15%以上。2)技术指标:
传感器智能制造新模式:
产品设计全面采用数字化技术,建立产品数据管理系统;主要生产设备数控化率达到80%以上;工序在线检测和成品检测数据自动上传率超过90%,建立产品质量追溯系统;建立生产过程数据库,深度采集制造进度、现场操作、设备状态等生产现场信息;建立面向多品种、小批量的制造执行系统(mes),实现10种以上产品/规格混合生产的排产和生产管理;建立企业资源计划管理系统(erp),实现供应、外协、物流的管理与优化。
移动终端智能制造新模式:
实现高速高精钻攻中心、国产数控系统、机器人与收取料系统的协同运动控制,实现多种车间智能装备之间的协同工作;采用基于工艺知识库的三维智能工艺规划,提高研制效率;通过高级计划排程和实时生产响应技术,减少设备空转时间;建立生产过程数据库,充分采集制造进度、现场操作、设备状态等生产现场信息;提高车间加工过程质量检测 3 自动化程度,建立产品质量追溯系统,实现全制造过程品检数字化;建立面向大批量快速响应生产的制造执行系统(mes),实现基于实时制造数据的可钻取仿真车间。
3)专利、软件著作权、标准(技术规范)
传感器智能制造新模式:申请2项以上发明专利、登记3项以上软件著作权、形成3项以上企业/行业/国家标准草案。
移动终端智能制造新模式:申请5项以上发明专利、登记6项以上软件著作权、形成5项以上企业/行业/国家标准草案。
3、安全可控智能制造手段
传感器智能制造新模式:自动激光切割机、传感芯体自动检测系统、自动视觉检测系统、传感器在线激光修调系统、焊接机器人、在线智能测试系统。
移动终端智能制造新模式:工业机器人、高速高精加工中心、agv小车、自动化生产线集中控制系统、视觉化品质检测设备、rfid标签与读写器及系统、自动化夹具。
(二)高档数控机床和机器人智能制造新模式
1、实施内容
支持高档数控机床及其数控系统、伺服电机、功能部件等核心零部件的智能制造新模式应用,实现高档数控机床 智能制造的产品研发、制造、物流、质量控制的全流程智能化。
支持铸、锻、焊等基础智能制造新模式应用,实现基础制造智能制造新模式的工艺模拟优化、制造、物流、质量追溯和供应链管理的全流程智能化。
支持工业机器人及其高精度减速器、机械臂、伺服电机等零部件智能制造新模式,实现机器人智能制造新模式的产品设计、生产加工、识别检测和物流仓储的全流程智能化。
2、考核指标 1)综合指标
高档数控机床及其核心部件智能制造新模式:运营成本降低10%以上,产品研制周期缩短50%以上,生产效率提高30%以上,产品不良品率降低10%以上,能源利用率提高10%以上。
基础智能制造新模式:运营成本降低20%以上,生产效率提高20%以上,产品不良品率降低10%以上,能源利用率提高10%以上。
机器人及其核心部件智能制造新模式:运营成本降低10%以上,生产效率提高30%以上,产品不良品率降低10%以上,产品研制周期缩短30%以上,能源利用率提高4%以上。
2)技术指标
高档数控机床及其核心部件智能制造新模式:产品设计全面采用数字化技术,制造过程数控化率达到90%以上,通过网络实现数字化智能加工装备、nc系统、智能仪器仪表及传感器、物流及仓储系统等设备的互联与集中监控,采用信息化生产管理,构成集成化的车间现场管控系统。产品优质率达到95%以上。
基础制造智能制造新模式:产品设计的数字化率达到90%以上、制造过程的数控化率达到80%以上、形成完善工艺与生产的数据平台、建立完整的产品生命周期管理体系、构建plm和ics/mes/erp等系统并高效无缝集成,实现产品研发、工艺设计、仿真验证、制造生产的数字化;采用传感器、在线检测、数控设备、机器人等智能装备,实现制造过程的工艺优化、批量定制、混线生产和质量追溯的智能化要求。
机器人及其核心部件智能制造新模式:通过网络实现设备的互联与集中监控,采用信息化生产管理,构成集成化的车间现场管控系统。可实现日连续三班生产,产品优质频率 95%。形成完善的设计与生产的数据平台,实现产品生产在线监控与测量,建立具有行业及企业特点的基础数据库,ics/mes/erp等系统高效无缝集成。
3)专利、软件著作权、标准(技术规范)申请3以上项专利、登记10项以上软件著作权、形成5项以上企业/行业/国家标准草案。
3、安全可控的智能制造手段
上下料、喷涂、装配、打磨、焊接、检测机器人,智能激光/重力/接近开关/光电开关等智能传感器,自动识别系统,控制网络与传感,测控装置与系统,功能安全评估系统,误差检测及轨迹纠偏等自动检测系统。
(三)航空装备智能制造新模式
1、实施内容
重点支持基于模型的工程方法,融合互联网思维及大数据、云计算等技术,从价值链、企业层、车间层和设备层共四个层面,提升航空装备制造系统的状态感知、实时分析、决策和精准执行水平;以飞机、直升机及发动机整机研发、关键系统制造以及部/总装为集成应用,实现设计制造一体化云平台、广域协同供应链、智能生产制造、敏捷运行支持,形成智能制造体系。
2、考核指标(1)综合指标
产品研制周期缩短20%以上,生产效率提高20%以上,运营成本降低30%以上,产品不良品率降低10%以上,能源利用率提高4%以上。(2)技术指标
实现供应链面向以客户为中心的能力协同优化及智能感知与决策、生产系统能力仿真、车间/生产线的动态排产与调度、自适应加工与装配、基于模型的检测、物流的智能配送。形成航空智能制造工程环境的方法、流程和工业软件体系;设计全面采用数字技术;建立协同设计、制造和服务云平台;开发智能制造运行系统;建立智能部/总装生产线、智能物流配送系统等。建立具有行业及企业特点的基础数据库、实现ics/mes/erp的无缝集成。
(3)知识产权
申请10项以上专利、登记10项以上软件著作权、形成10项以上企业/行业/国家标准草案。
3、安全可控的智能制造手段
智能部/总装生产线;智能物流配送系统等;自适应加工/装配工艺设备;柔性工装;智能测量检验设备;高精度复杂构件增材制造设备;机器人自动钻铆系统;特种机器人等
(四)海洋工程装备及高技术船舶智能制造新模式
1、实施内容
围绕各类中间产品柔性、高效、智能化制造的需求,重点支持海工装备、船舶及其配套产品的智能制造新模式。
2、考核指标
(1)综合指标
产品研制周期缩短20%以上,生产效率提高30%以上,运营成本降低20%以上,产品不良品率降低5%以上,能源利用率提高12%以上。
(2)技术指标
产品设计采用三维cad设计技术,并与cae、capp、cam有机集成,建设完整的产品数据管理系统(pdm);在各关键工序设备数控化率80%以上。建立车间级的工业通信网络,实现信息互联互通和有效集成。建立生产过程数据采集和分析系统,并与车间制造执行系统实现数据集成和分析;配置数字化在线检测和成品检测设备,监测数据自动上传,建立产品质量追溯系统;建设智能物流系统;建立车间制造执行系统(mes)、企业资源计划管理系统(erp),实现计划、排产、生产、检验的全过程闭环管理,并实现ics、mes和erp的无缝信息集成;采用大数据等新一代信息技术,进行智能制造新模式的经营、管理、决策的优化。
(3)知识产权
申请15项以上专利、登记15项以上软件著作权、形成15项以上企业/行业/国家标准草案。
3、安全可控的智能制造手段
材料检测及标识智能单元、智能化加工流水线、智能成型工艺及装备、智能化装焊流水线
(五)先进轨道交通装备智能制造新模式
1、实施内容
支持基于机车车辆、信号系统、工程养护装备及其关键零部件等智能制造新模式,实现先进轨道交通装备产品研发、制造、物流、质量控制全流程的智能化。
2、考核指标 1)综合指标
运营成本降低20%以上,产品研制周期缩短50%以上,生产效率提高30%以上,能源利用率提高5%以上。
2)技术指标
产品设计的数字化率达到90%以上、制造过程的数控化率达到80%以上、形成完善的设计与生产的数据平台、实现产品生产在线监控与测量、建立具有行业及企业特点的基础数据库、构建ics/mes/erp等系统并高效无缝集成,实现产品研发、工艺设计、仿真验证、制造执行的数字化;采用传感器、测控设备、数控加工设备、增材制造、机器人等智能装备,实现制造过程的自动化和网络化、物流采集信息化、物料传送自动化。
3)专利、软件著作权、标准(技术规范)
申请3项以上专利、登记10项以上软件著作权、形成5项以上企业/行业/国家标准草案。
3、安全可控的智能制造手段
上下料机械手、焊接机器人、喷涂机器人、激光焊接与切割设备、增材制造装备、智能物流装备、自动检测设备、智能传感器、工业信息安全防护装备。
(六)节能与新能源汽车智能制造新模式
1、实施内容
支持以用户订单为基础的柔性化生产体系和多种车型的任意顺序的混流智能化生产,打造高效协同的汽车制造供应体系,大幅提升新能源汽车智能制造水平。
2、考核指标 1)综合指标
生产效率提升20%以上,资源综合利用率提升20%以上,产品不良品率降低20%以上,产品研制周期缩短50%以上,运营成本降低20%以上。
2)技术指标
节能与新能源汽车智能制造新模式:生产节拍提高20% 以上;实现多种车身产品平台、多种车型的柔性生产;生产线工序间实现自动输送,传输时间5~6秒;产品个性化配置率达到10%;可远程升级的汽车电子控制单元(ecu)比例达到10%。
节能与新能源汽车电池智能制造新模式:实现软包电池和方形铝壳电池混流共线生产,实现模组自动化生产率100%,系统装配自动化率80%以上;生产节拍达到15分钟/组;生产效率提高10倍以上。动力电池系统数字化车间单线生产规模1.5万组/年以上。集成企业制造执行系统,实现生产数据的自动化采集及生产信息的双向追溯。
3)专利、软件著作权、标准(技术规范)
申请专利10项以上(发明2项以上)、登记软件著作权10项以上、形成4项以上企业/行业/国家标准草案。
3、安全可控的智能制造手段
伺服点焊焊接机器人、弧焊机器人、搬运机器人;机器人智能视觉识别系统;机器人智能协同系统;基于工业总线技术的可编程控制系统;智能切换定位装置;闭环伺服位置传感装置;数字智能装配设备、智能生产信息管理系统、数据库管理系统、基于工业总线技术的可编程控制系统、在线产品质量检查系统、智能自动化物流传输系统等。
(七)电力装备智能制造新模式
1、实施内容
支持建设发电设备核心零部件及智能电网中低压配电设备和用户端设备智能制造新模式。
2、考核指标 1)综合指标
运营成本降低20%以上,产品研制周期缩短20%以上,生产效率提高20%以上,产品不良品率降低10%以上,能源利用率提高4%以上。
2)技术指标
建立产品模型、制造模型、管理模型、质量模型等数字模型,优化配置互联互通的产品全生命周期管理系统(plm)、企业资源计划管理系统(erp)和车间制造执行系统(mes)。实现基于模型的产品设计数字化、企业管理信息化和制造执行敏捷化,形成企业统一的数据平台,产品设计的数字化率达到100%。建立生产过程数据采集分析系统和车间级工业通信网络,充分采集制造进度、现场操作、质量检验、设备状态等生产现场信息,并与车间mes实现数据集成。建立自动化智能化的加工、装配、检验、物流等系统,并通过工业通信网络实现互联和集成,关键加工工序数控化率达到80%以上。
3)专利、软件著作权、标准(技术规范)
申请3项以上专利(发明专利1项以上)、登记10项以上软件著作权、形成4项以上企业/行业/国家标准草案。
3、安全可控的智能制造手段
智能化加工流水线、机器人、智能检测装置、精益电子看板、制造执行系统(mes)、产品全生命周期管理系统(plm)。
(八)新材料智能制造新模式
1、实施内容
针对我国能源、环境、柔性电子、航空航天、国防装备等高科技领域对石墨烯、碳纤维的迫切需求,以石墨烯结构与功能多样化和可控化为目标,支持石墨烯智能制造新模式;支持年产1000吨的t700级碳纤维材料智能制造新模式,实现在生产执行管理、先进过程控制与优化、物流与质量追溯等方面的智能化,形成具有知识产权的装备与技术。
2、考核指标 1)综合指标
生产效率提高30%以上,产品不良品率降低20%以上,运营成本降低20%以上,能源利用率提高25%以上。
2)技术指标
石墨烯智能制造新模式:建立多级(多维多尺度)随机模型结构设计系统;建立智能制造装备组件耦联与参数逐级 优化系统,通过元素、电场、缺陷、应变等手段对材料物性原位实时调控。实现高质量石墨烯规模化低成本制备与功能调制技术的突破;实现石墨烯粉体材料层数和尺寸控制、可控表面改性和功能化的规模化制备;实现单层石墨烯薄膜的大面积连续制备和无损低成本转移技术,单晶尺寸、导电性和透光度可控。薄膜室温体电荷迁移率>104 cm2/(v·s),面电阻达50 ω/sq(可见光透过率>90%);缺陷密度在103~1012/cm2之间可控。粉体比表面积>2600m2/g。年产能达20万平方米(薄膜)/500吨(粉体)。异质结太阳能电池的光电转换效率>20%,选择性渗透膜的脱盐率>95%,柔性应变传感器的灵敏系数>105。
碳纤维智能制造新模式:关键设备数控化率超过80%;实现全系统的传动比控制等高精度运动控制和针对时变、非线性、大时滞等工艺对象的先进控制;建立企业内部智能物流系统和产品追溯系统;建立横跨化工、纺织、新材料多个领域的、行业特点鲜明的mes系统。
3)专利、软件著作权、标准(技术规范)
石墨烯智能制造新模式:申请6项以上发明专利、登记15项以上软件著作权、形成3项以上企业/行业/国家标准草案;
碳纤维智能制造新模式:申请2项以上发明专利、登记 3项以上软件著作权、形成3项以上企业/行业/国家标准草案。
3、安全可控的智能制造手段
dcs系统、专用控制系统、运动控制系统、智能检测设备、基于条形码的物流装置、先进控制软件、mes管理系统等。
(九)农业机械智能制造新模式
1、实施内容
支持基于大中型拖拉机、收获机械、大型农机具及关键零部件智能制造新模式,实现农业机械产品设计、加工、检测、装配的全流程智能化。
2、考核指标 1)综合指标
生产效率提高50%以上,产品不良品率降低10%以上,能源利用率提高40%以上,运营成本降低20%以上,产品研制周期降低20%以上。
2)技术指标
产品设计的数字化率达到80%以上、制造过程的数控化率达到80%以上、形成完善的设计与生产的数据平台、实现产品生产在线监控与测量、建立具有行业及企业特点的基础数据库。实现农机企业的设计、生产和控制与erp、mes的 智能整合。通过rfid和光感仓储和物流设备实现生产和物流的一体化。
3)专利、软件著作权、标准(技术规范)
申请2项以上专利、登记5项以上软件著作权、形成3项以上企业/行业/国家标准草案。
3、安全可控的智能制造手段
自动柔性生产线,高档数控机械加工系统,现代化涂装生产线,智能化物流系统,焊接机器人系统及专用智能工装夹具,mes/erp管理系统,自动引导小车,数字化测量检验设备等。
智能制造工程 智能制造工作方案篇四
智能制造是先进制造技术的最新的制造模式之一,智能制造系统是一个信息处理系统,它的原料、能量和信息都是开放的,因此智能制造系统是一个开放的信息系统。智能制造技术是制造技术、自动化技术、系统工程与人工智能等学科互相渗透、互相交织而形成的一门综合技术。智能制造是新世纪制造业的发展方向。由于其实施方案可以在整个制造的大系统(产品的全生命周期)进行,也可以在单元技术(例如模具设计专家系统、数控机床诊断专家系统、智能机器人等)上逐步推进,从经济性、实用性讲,也是我国实现制造业跨越发展的必经之路。引言
智能制造「‘」(工m:intelligent manufacturing)是一种由智能机器和人类专家共同组成的人机一体化智能系统,它在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作共事,去扩大、延伸和部分地取代人类专家在制造过程中的脑力劳动。并对人类专家的制造智能进行收集、存储、完善、共享、继承和发展。1.1智能制造系统概述
智能制造系统「2」就是要通过集成知识工程、制造软件系统、机器人视觉与机器人控制等来对制造技术的技能与专家知识进行模拟,使智能机器在没有人工干预情况下进行生产。智能制造系统就是要把人的智力活动变为制造机器的智能活动。智能制造系统的物理基础是智能机器,它包括具有各种程序的智能加工机床,工具和材料传送装置,检测和试验装置,以及装配装置等。1.2智能化制造的特点
川智能化制造技术以实现优质、高效、低耗、清洁、灵活生产,提高产品对动态多变市场的适应能力和竞争力为目标。
(2)智能化制造技术不局限于制造工艺,而是覆盖了市场分析、生产管理、加工和装配、销售、维修、服务,以及回收再生的全过程。
(3)智能化制造强调技术、人、管理和信息的四维集成,不仅涉及到物质流和能量流,还涉及到信息流和知识流,即四维集成和四流交汇是智能化制造技术的重要特点:
(4)智能化制造技术更加重视制造过程组成和管理的合理化以及革新,它是硬件、软件、智能(人)与组织的系统集成。
2.智能化制造数控设备的关键技术
机械制造设备的智能化、网络化、以及对神经元网络、云计算技术的研究与应用,使机械制造工)‘智能化技术得到了跨越式的发展,可以说这是又一次具有划时代意义的工业技术革命。目前,智能化制造数控设备的关键技术,除了机械主体以外,主要是由智能数控系统技术、智能感知技术、智能自适应技术、智能神经元网络技术、智能云计算技术和智能专家系统等主要技术构成。
(1>智能化数控系统数控设备智能化的发
展是以数控系统完善的软硬件功能及高灵敏度、高精度感知检测系统为基础,以适应智能化、信息化、数字化集成技术发展的要求。为追求数控设备加工效率和加工质量,数控系统不但有自动编程、前馈控制、模糊控制、自学习控制、工艺参数自动生成、三维刀具补偿、运动参数动态补偿等智能化功能,并有故障诊断专家系统,使自诊断和故障监控功能更趋势完善。伺服驱动系统智能化,能自动感知负载变化,自动优化调整参数。如发那科推出的hrv控制,通过共振追随型hrv滤波器,可以避免因频率变动而造成设备的共振。通过融合旋转伺服电动机,高精度、高响应和高分辨率脉冲编码器,实现高速和高精度的伺服控制,保证极其平稳 的进刀。
(2)智能自适应控制技术自适应控制分为 工艺自适应和儿何自适应。工艺自适应又分为
最佳自适应控制系统(aco)和约束式自适应(acc)。自适应控制自20世纪60年代已开始研究,但用于生产实践尚不普遍。目前应用面较广的还是结构简单的acc系统,已用于铣、车、钻、磨、电加工和加工中心等机床上;而aco多用于加工因素相对简单的磨削和电火花加工(ed m)上。影响加工的因素很多很复杂,不仅建立数学模
型困难,而且要实时采集和实时调整参数也有很大难度,有待深入研究。(3)智能化神经元网络技术最智能的莫过于人的大脑,人工神经元网络
(ann)是一种模拟
人的神经结构,即类似人的大脑神经突触连接的结构进行信息处理的复杂网络系统。人工神经网络具有自学习功能、联想记忆功能、非线性映射功能和高速寻找优化解的功能等。目前,神经元网络多用于数控设备可靠性预测和优化工艺参数方面,神经元网络在机床数控系统方面的研究与应用尚不多见。随着神经元网络技术的发展,在数控机床方面的应用可能会有很好的前景,或许会把数控系统的智能化水平推向高级阶段。未来儿年希望能有一个较快的发展。(4)智能专家系统专家系统是一个智能计算i机程序系统,其专家知识库中含有某个领域大量的l专家知识与经验,就是利用这些专家知识、经验和土解决问题的方法来处理该领域的技术问题。它能够f应用人工智能技术,根据该专家系统中的知识和经验进行推理和判断,模拟专家的决策过程,来解决·需要专家处理的复杂问题。目前,数控设备领域尚l缺乏这种专家系统。(5)云计算将把智能化制造推向更高级阶右段国外工业技术发达国家的大型工业企业、研究机构和高等院校对云计算的研究和发展都极为重视,之认为这是一种具有划时代意义的技术。如美国宇航!局和通用汽车公司都在研究和应用云计算技术;我1国北京建有云计算基地,华为技术有限公司和tcl集团也都特别关注云计算的发展、研究和应用。3.智能化工厂
智能化机械工)‘是以“智能化”为核心,以智能化、数字化、网络化为主要特征的生产、经营实体。智能化工)‘将逐步分层次实现。智能工业机器人在智能自动化制造工)‘中扮演着重要角色。(1>智能工业机器人在智能化数控设备中
除了各种数控设备和相关数控配套设备以外,智能工业机器人在智能制造单元、智能制造系统和智能制造工)‘中具有重要作用。
(2)智能化自动化工)‘在各种智能化自动化数控设备的基础上,智能化工)‘将由工厂‘局部智能自动化、逐步分层次地发展到全工)‘智能自动化和社会化智能制造。
第一层次:单机或单元智能自动化。
单机或单元智能自动化,可以实现长时间无人值守。国内外都有用于生产 的实例。
第二个层次:生产制造系统智能自动化。
在第三代“智能机器人化单元”的基础上,实现计算机网络控制生产车间全自动化系统。包括毛坯仓储管理,再制品仓储管理,成品零件仓储管理及其搬运、装卸、装配作业和质量检验等。
第三个层次:智能化数字化网络制造系统。
在第二层次生产制造系统智能自动化的基础上,配置网络综合管理系统,来实现全工)‘的智能化数字化网络制造。智能化工)‘的实现主要是靠信息通信技术(ict)和智能网络的可靠运行加以保证。具有实时资料搜集与传输功能、高效能计算机与分析预测功能、远程监控与诊断功能及模拟功能等。智能化工)‘最核心的部分是生产过程和全面经营运行的智能自动化,包括设计智能化,生产排序自动化,生产线自动化,测试检验自动化,仓储自动化,电力管理智能自动化等等,进一步发展到自动化无人化工)‘(绝大多数设备可以无人值守)。
第四个层次:智能化社会化生产。
智能化网络化社会化制造,将山企业内部局域网经因特网向企业外部传输。这就是所谓的internet/intranet。网络可使企业与企业之间进行跨地区协同设计、协同制造、信息共享、远程监控、远程诊断和服务等。网络能为制造提供完整的生产数据信息,可以通过网络将加工程序传给远方的设备进行加工,也可远程诊断并发出指令调整。网络使各地分散的数控机床联系在一起,互相协调,统一优化调整,使产品加工不局限于一个工)‘内而实现社会化生产。智能化社会化制造能够借助internet网实现跨行业、跨国际智能化制造,进人internet/intranet时代。云计算借助internet网整合了计算机资源,为智能化制造开了先河。智能化网络化社会化制造将引领社会和全球资源的整合与优化运用,同时将有效地提高人类的生活质量,逐步地减少人类的体力劳动而扩大脑力劳动的比重,进入知识社会,智能社会。
智能制造具有高科技高水平的先进制造系统,面临一些极具挑 战性的问题。当然也需要我们投入大量的研究去攻克这些技术难题。产品和制造过程的数字建模理论及混合约束求解方法,几何表示与推理在运动规划、抓取、夹持、装配、nc加工、计算机视觉、测量中的应用,制造技能和制造知识的表示、获取与推理。智能制造单元的agent建模及智能制造系统的多agent建模理论、多agent系统学>-j及重构理论、多agent系统动力学分析方法及性能评价标、多agent系统规划、调度、控制与协调等。制造资源的holon模型holonic系统组成及其分别式协调与控制等。由于人类智能问题本身的复杂性,智能制造理论与技术的研究任重而道远,上述问题的深入研究,不仅将促进智能制造理论与技术的发展与进一步完展具有积极的推动作用。不仅要提高机器设备的智商,更要协调好人与机器的关系,建立一种新型的人机一体化关系,从而产生高效高性能的生产系统。总之,随着智能制造技术的普及以及其带来的优势愈发明显,可以预见在不远的将来,智能制造将成为下一代重要的生产模式。参考文献:
1.赵亚波 智能制造(工业控制计算机}2002年15卷第3期(333001)2.荣烈润 面向21世纪的智能制造机电一体化2006,12(4)3.熊有伦 孙容磊 李斌 吴波 智能制造:回顾与展望木华中科技大学机械学院武汉430074 c1〕土子龙.中国装备制造业系统演化与评价研究[d].中国博 上学位论文全文数据库,2007 c2} l一继勇.教育结构、产业结构和就业结构的关系研究[d].中 国优秀硕士学位论文全文数据库,2007 参考文献
[1]杨叔子,丁洪.智能制造技术与智能制造系统的发展与研究[j].中国机械工程1992,3(2):15~18 [2]孙大勇.先进制造技术[m].北京:机械工业出版社,2000,12~13
智能制造工程 智能制造工作方案篇五
现代制造技术
1142813203 吴文乐
摘要:现代制造技术是在传统制造技术的基础上, 不断吸收和发展机械、电子、能源、材料、信息及现代管理技术的成果, 将其综合应用于产品设计、制造、检验、管理服务等产品生命周 期的全过程, 以实现优质、高效、低耗、灵活、清洁的生产技术模式,取得理想的技术经济效果的制造技术的总称传统的自动化生产技术可以显著提高生产效率,然而其局限性也显而易见,即无法很好地适应中小批量生产的要求。随着现代制造技术的发展,特别是自动控制技术、数控加工技术、工业机器人技术等的迅猛发展,柔性制造技术(fmi)应运而生。
关键词:现代制造技术;自动控制技术;柔性制造技术
1.现代制造技术发展综述
现代制造技术在系统论、方法论、信息论和协同 论等的基础上形成制造系统工程学,是一种广义制造的概念,亦称之为“大制造”的概念,它体现了制造概念的扩展。广义制造概念的形成过程主要有以下几方面原因[1]。
1).制造设计一体化。体现制造和设计的密切结合,形成了设计制造一体化,设计不仅是指产品设计,而且包括工艺设计、生产调度设计、质量控制设计等。
2).材料成形机理的扩展。现在加工成形机理明确地将加工分为去除加工、结合加工和变形加工。
3).制造技术的综合性。现代制造技术是一门以 机械为主体,交叉融合光、电、信息、材料等学科的综合体,并与管理科学、社会科学、文化、艺术、人机工 程、生物工程和生命科学等相结合,拓展了新领域。现代制造技术应包括硬件和软件两大方面,硬/软件工具、平台和支撑环境有了很大的发展。
4).产品的全生命周期。制造的范畴从过去的设计、加工和装配发展为产品的全生命周期,包括市场调研、设计、制造、销售、维修和报废处理等。
5).生产制造模式的发展。计算机集成制造技术 是制造技术与信息技术结合的产物,集成制造系统强 调信息集成,其后出现了柔性制造、敏捷制造、虚拟制 造、网络制造、大规模定制、绿色制造、智能制造和协 同制造等多种制造模式,有效地提高了制造技术的水平,扩展了制造技术的领域[2]。
现代制造技术的发展主要沿着“广义制造”或称 “大制造”的方向发展,其具体的发展可以归纳为四个方面和多个大项目[3],如图1所示:
图1:现代制造技术方向
针对现代制造技术,本文从柔性制造技术的角度对现代制造技术进行学习,对柔性制造在实际中的应用进行深入的研究;
2.柔性制造
2.1 柔性制造简述
所谓“柔性”,是指制造系统(企业)对系统内部及外部环境的一种适应能力,也是指制造系统能够适应产品变化的能力。柔性可分为瞬时、短期和长期柔性[4]。瞬时柔性是指设备出现故障后,自动排除故障或将零件转移到另一台设备上继续进行加工的能力;短期柔性是指系统在短时期内,适应加工对象变化的能力,包括在任意时期混合进行加工2种以上零件的能力;长期柔性则是指系统在长期使用中,能够加工各种不同零件的能力。迄今为止,柔性还只能定性地加以分析,尚无科学实用的量化指标。因此,凡具备上述3种柔性特征之一的、具有物料或信息流的自动化制造系统都可以称为柔性制造系统。柔性制造技术是计算机技术在生产过程及其装备上的应用,是将微电子技术、智能技术与传统制造技术融合在一起,具有自动化、柔性化、高效率的特点,是目前自动化制造系统的基本单元技术[5]。
柔性制造技术是对各种不同形状加工对象实现程序化柔性制造加工的各种技术的总和[6]。柔性制造技术是技术密集型的技术群,我们认为凡是侧重于柔性,适应于多品种、中小批量(包括单件产品)的加工技术都属于柔性制造技术。目前按规模大小划分为[7]:
(1)柔性制造系统(fms):关于柔住制造系统的定义很多,权威性的定义有:美国国家标准局把fms定义为:“由一个传输系统联系起来的一些设备,传输装置把工件放征其他联结装置上送到各加工设备,使工件加工准确、迅速和自动化。
(2)柔性制造单元(fmc):m s是fms向廉价化及小型化方向发展的一种产物,它是由l~2台加工中心、工业机器人。数控机床及物料运送存贮设备构成,其特点是实现单机柔性化及自动化,具有适应加工多品种产品的灵活性。迄今已进入普及应用阶段。
(3)柔性制造线(fml):它是处于单一或少品种人批量非柔性自动线与中小批量多品种fms之间的生产线。其加工设备可以是通用的加工中心,cnc机床;亦可采用争用机床或nc专用机床,对物料搬运系统柔性的要求低于fms,但生产率更高。它是以离散型生产中的柔性制造系统和连续生过程中的分散型控制系统(d c s)为代表,其特点是实现生产线柔性化及自动化,其技术已日趋成熟,迄今已进入实用化阶段。
(4)柔性制造工厂(fmf):fmf是将多条fms连接起来,配以自动化屯体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整f m s。它包括了cad/cam,并使计算机集成制造系统(cims)投入实际,实现生产系统 柔性化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。fmf是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统(ims)为代表,其特点是实现工厂柔性化及自动化[8]。
2.2柔性制造所采用的关键技术
1.计算机辅助设计未来cad技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用cad数据,通过计算机控制的激光扫描系统,将二维数字模型分成若干层二维片状图形,并按二维片状图彤对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各斤状固化塑料粘合在一起,仅需确定数据,数小时内便呵制出精确的原型。它有助于加快开发新产品和研制新结构的速度。
2.模糊控制技术模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊摔制器具有自学习功能,可在控制过程中不断获取新的信息井自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。
3.人工智能、专家系统及智能传感器技术迄今,柔性制造技术中所采用的人工智能大多指基础规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测,诊断、查找故障、设汁、计划、监视、修复、命 令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为柔性制造的诸方面工作增强综合性。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在柔性制造(尤其智能型)中起着非常重要的关键性的作用。目前对未来智能化柔性制造技术具有重要意义的一个正在急速发展的领域是智能传感器技术。该项技术是伴随计算机应用技术和人工智能产生的,它使传感器具有内在的“决策”功能。
4.人工神经网络技术人工神经网络(ann)是模拟智能生物的神经网络对信息进行并处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列到专家系统和模糊控制系统,成为现代自动化系统中的一个组成部分[9]。
3.国内现代制造技术状况
近年来,世界各国都投入了巨大的财力和物力,强化作为光机电一体化制造业基础的先进制造业的技术和产业发展的战略研究。美国、德 国、日 本 等 国 已 经 开 发 出 了 数 控(nc)、计算机数控(cnc)、直接数控(cam)、计算机集成制造系统(cims)、制造资源规则(mrp)、柔性制造单元(tmc)、柔性制造系统(fms)、机器人、计算机辅助设计/制造(cad/cam)、精益生产(lp)、智能制造系统(ms)、并行工程(ce)和敏捷制造(am)等多项现代制造技术与制造模式。这些技术的推广与应用,不仅使本国企业的国际竞争力得到巩固,也使得世界先进制造业发展迅猛[10]。我国制造业市场的巨大潜力,为现代制造技术发展提供了广阔的市场空间。但是,与制造业发达国家和地区相比,国内的现代制造技术的研发与市场拓展还不均衡。其中,国内机械基础件制造行业中的数控化率极低,不足1.6%,先进加工工艺、技术和装备的普及程度不足10 % ;cad/cam 系统应用的普及率在国内骨干企业仅有35%,产业规模较小。另外,在相关行业中如印刷业、电力行业和医疗器械行业等,技术装备的低数控化率也远不能满足市场对中高档先进产品的需求。纵观国际制造业的竞争与发展,面对国际、国内两个制造业市场的日渐融合,如何立足国内制造业的市场需求,整合分散的科研与企业资源,尽快形成自己在先进制造产业竞争中的技术优势,已经是摆在我国制造业面前的迫在眉睫的课题了[11]。
总之,重视制造业和现代制造技术已成为全球化的大趋势。现代制造技术不是一项具体技术,而是利用系统工程技术将各种相关技术集成的一个有机整体;现代制造技术是一种动态技术,而不是一成不变的,它需要不断吸收各种高新技术成果,并将其渗透到产品的所有领域,结合成一个有机整体,实现优质、高效、低耗、清洁和灵活的生产[12];现代制造技术的目的是提高制造业的综合效益,其不摒弃传统技术,而是有赖于不断用科技新手段去研究它和传承它,并应用科技新成果去改造它和充实它;现代制造技术在强调环境保护的同时,还强调各专业学科之间的相互渗透、融合和淡化,并消除其间的界限。我国先进制造技术的发展应结合自身的特点,形成特色,大力发展一些关键前沿技术,比如新一代材料成型技术、微米及纳米技术、快速原型制造以及智能制造等[13]。在不久的将来,现代制造技术将得到更大的发展和壮大,发展和应用先进制造技术是每个国家为提高企业的国际竞争力和技术创新能力的必然选择。
参考文献:
[1]张强.浅谈柔性制造技术的现状及发展[j].技术与市场,2008.(5):39-40.[2]沈向东.柔性制造技术[m].北京:机械工业出版社,2013.2.[3]吴立.关于柔性制造的研究[j].机床与液压,2010,38(14):9-11.[4]陈琪.制造业企业推行柔性制造的意义及对策[j].企业经济,2005(4):7-8.[5]崔培枝,朱胜,姚巨坤.柔性再制造系统研究[j].机械制造,2003(11):7-9
[6]王隆太,朱灯林,戴国洪.机械cad/cam技术[m].北京:机械工业出版社,2005.
[7]盛晓敏,邓朝辉.先进制造技术[m].北京:机械工业出版社,2003.[8] kai-mo 现代制造技术的发展动向[j]-科技成果管理与研究2008(6).[9]蒋新松.21世纪企业的主要模式一敏捷制造企业[j].计算机集成制造系统一cims,1996,2(4):3—8.
[10]罗振壁,周兆英,汪劲松,等.制造的革新[j].机械工程学报,1995,31(4):31—37.
[11]王永贵.战略柔性与企业高成长.天津:南开大学出版社,2003.67—69.[12]张荣,陈大佑.提升国有大中型企业竞争力的新途径——柔性化管理.当代经济研究.2006.(1):33~35.[13]王先逵.制造工艺核心论[j].世界制造技术与装备市场,2005(3):28—32.