2025年正反比例的意义教学设计(5篇)
文件格式:DOCX
时间:2023-03-01 00:00:00    小编:高工要跑路

2025年正反比例的意义教学设计(5篇)

小编:高工要跑路

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

正反比例的意义教学设计篇一

一、教学内容: 《反比例的意义》是六年制小学数学(人教版)下册的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

二、学生分析: 在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

三、设计理念: 学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。

四、教学目标: 1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

2.引导学生揭示知识间的联系,培养学生分析判断、推理能力。

3.培养学生热爱数学的激情。

五、教学重难点:

教学重点:理解反比例的意义。教学难点:能正确判断成反比例的量。

六、教学流程:

(一)、复习铺垫,猜想引入

师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

2.猜想

师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)师:从字面上看“反比例”与“正比例”会是怎样的关系? 生:相反的。

师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

生:(略)

设计意图:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

(二)、提供材料,组织研究 1.探究反比例的意义

师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

(1)表中有哪两个相关联的量?(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

2.小组讨论、交流。(教师巡回查看,并做适当指导。)3.汇报研究结果

(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

生2:已行路程十剩下路程=总路程(一定)。生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”„„

(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)师:表2和表3中两个量的变化规律有哪些共性?(生答略。)师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)师:如果用字母a和b表示两个相关联的量,用c表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书] 设计意图:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表

1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

4.做一做(略)5.学习例6 师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

(三)、巩固练习,拓展应用 1.基本练习。(略)2.拓展应用。

师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头„„忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

设计意图:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数

量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

3.综合练习

(四)、总结

七、板书设计

反比例关系 判断两个量 x×y=k(一定)

八、教学反思

《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

正反比例的意义教学设计篇二

反比例的意义教学设计

教学目的:

1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。2.使学生进一步认识事物之间的相互联系和发展变化规律。3.初步渗透函数思想。

教学重点:认识反比例关系的意义,掌握成反比例量的变化规律及其特征。教学难点:能够比较有条理的叙述判断过程。教学过程

一、谈话导入:

师:上一节课我们研究了正比例关系,现在谁能说一说判断两个量是不是成正比例的依据是什么? 指名说

师:咱们一块做几道题判断一下。出示:

1、除数一定,被除数和商

2、单产量一定,总产量和面积

3、加数一定,和和另一个加数

4、每张纸厚度一定,总厚度和纸的张数 指名说并说请判断依据

师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)

二、学习

师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)

师:到底同学们的猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流

学生自己填,在小组活动,师巡视 学生台前展示交流

师:这两个情境中的两个量有什么共同点?这和之前我们推测的一样吗?你能根据我们这两道题总结一下什么是反比例关系吗? 指名说,出示大屏幕定义,齐读

师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?

指名说,(大屏幕出示红色字)

师:你能举出一些生活中成反比例的关系的例子吗? 指名举例,追问:相关联的量是哪两种?不变的量是什么?

师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。

今天我们学习了反比例关系,大家想想它和我们之前研究的正比例关系有什么相同和区别? 指名说

出示表格,明确正比例和反比例的异同点。

师:还记得正比例关系图象是什么样的吗?反比例关系也可以用图象来表示,(出示研究单中的两幅图),它和正比例关系图象有什么不同?对,它们是一条

光滑的曲线。拿第二道题举例,你能看出杯子的底面积分别是40平方厘米,50平方厘米时,水的高度分别是多少吗? 指名说

师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?

三、练习

1、书上51页8、9、10题,独立写,集体交流。

2、书上51页11题,指名交流,说理。

四、总结

师:这节课你有什么收获? 指名说

师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。

正反比例的意义教学设计篇三

反比例的意义教学设计

【教材分析】

这部分内容是在学生已经学习了比和比例以及成正比例的量,认识常见数量关系的基础上进行教学的,通过对两种数量保持积一定的变化,理解反比例关系,渗透初步的函数思想。通过学习这部分知识,可以帮助学生加深对过去学过的数量关系的认识,同时这部分知识在日常生活和工农业生产中有着广泛的应用,还是今后进一步学习中学数学、物理、化学等知识的重要基础。【教学目标】

1、使学生结合实际情境认识成反比例的量,能根据反比例的意义判断两种相关联的量是否成反比例;

2、使学生在认识成反比例的量过程中,进一步体会数量之间相依互变的关系,感受有效表示数量关系及其变化的不同数学模型,提升思维水平;

3、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的自信心。

【教学重点】掌握反比例的意义。

【教学难点】有条理地思考、判断成反比例的量。【教学准备】多媒体课件 【教学过程】

一、联系生活,导入新课

1、同学们,前两节课我们认识了正比例,怎样的两种量成正比例呢?(结合回答板书:相关联、比值一定、y/x=k<一定>)

2、判断下表中的两种量是否成正比例,为什么?

表1:成正比例。买的数量扩大,总价也随之扩大,总价和买的数量的比值一定。

表2:成正比例。飞行时间缩小,航程也随之缩小,航程和买的飞行时间的比值一定。

表3:不成正比例。数量和单价的比值不是一定的。

二、自主合作,探究发现

1、设疑引入(购买笔记本问题)

(1)(出示表格)谈话:除了观察到这两个量的比值不是一定,这两个量还存在其他关系吗?咋们不妨一起来研究研究。(2)四人小组合作研究:

1、观察表格中的两个量有什么变化?

2、这种变化有什么规律?

3、这种规律与成正比例的量的规律有什么不同?(3)全班交流。

1、观察表格中的两个量有什么变化?单价变化(扩大),数量也随之变化(缩小)

2、这种变化有什么规律?

这两个量的乘积总是一定的。板书:单价×数量=总价(一定)指出:都是用60元购买笔记本

3、这种规律与成正比例的量的规律有什么不同?

①成正比例的量,一个量扩大,另一个量也随之扩大,表3中,单价扩大,数量反而随之缩小。

②成正比例的量,它们的比值一定,表3中,单价和数量的乘积一定。(4)谈话:刚才,咋们研究了数量和单价的变化规律,猜一猜,单价和数量是什么关系呢?

请同学们打开课本65页,自学“试一试”上面的一段话,可以轻声读一读,圈圈重要的词字。

(5)交流:学生结合投影说说单价和数量之间的关系。(2到3人)单价和数量是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的数量是成反比例的量。这就是我们今天要认识的成反比例的量。(揭示课题)

2、试一试

师:我们继续来学习反比例,请看大屏幕:

(1)(出示表格)学生读一读题目,交流:表格中有哪两种量,他们关联吗?根据已知条件把表格填完整。然后指名口答,全班校对。(2)同桌合作讨论(出示要求)

算一算:相对应的两个数的乘积各是多少?

想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?

说一说:每天运的吨数和需要的天数成反比例吗?为什么?(3)全班交流。

算一算:相对应的两个数的乘积各是多少?(乘积都是72)

想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?

(这个乘积表示一共运的水泥吨数,每天运的吨数×天数=总吨数(一定)板书)

说一说:每天运的吨数和需要的天数成反比例吗?为什么?(略)

3、小结:刚才我们学习了两个反比例的例子,想一想,怎样的两个量是反比例关系?(板书:相关联、乘积一定)

4、用字母式子表示反比例的意义。

教师:根据上面两个例子,你也能像学习正比例的意义时那样用一个字母式子来表示反比例的意义吗?根据学生回答,教师板书:x×y=k(一定)

三、巩固应用,深化发展

1、完成“练一练”

让学生判断每袋糖果的粒数和装的袋数是否成反比例。(1)出示题目和要求

(2)把自己的想法和同桌互相说一说(3)再全班交流、评议。

2、根据情况选择完成练习十三第6题 出示题目,学生独立思考后依次交流3个问题

3、根据情况选择完成练习十三第7题(1)出示题目(2)学生独立思考(3)全班交流、评议。

4、判断下面每题中的两个量,哪些成反比例?(1)用同样多的钱购买不同的笔记本的单价和数量。(2)一个人的年龄与体重。

(3)长方形的面积一定,长方形的长与宽。(4)长方形的周长一定,长方形的长与宽。(5)x 和 y 是两种相关联的量。(机动)x × y = 5 5 × x = y

四、全课总结,拓展延伸

今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。认识成反比例的量

相关联 单价×数量=总价(一定)

比值一定 每天运的吨数×天数=总吨数(一定)

y/x=k(一定)x

相关联 乘积一定 ×y=k(一定)

相关

正反比例的意义教学设计篇四

《反比例函数的意义》教学设计

一、内容和内容解析 1.内容

反比例函数的意义. 2.内容解析

本课是反比例函数这一章的第一课时,其主要功能是在学生学习过的一次函数的基础上,通过实际例子帮助学生认识并归纳出反比例函数的意义.反比例函数作为初中三个基本函数(还有一次函数和二次函数)中最特殊的一个,明确其意义是最为重要的内容.另外本节课的学习可以给学生研究其它函数做好引领工作,帮助他们养成良好的思维品质和学习习惯.

学生需要对从实际问题中得出的三个关系式进行观察、归纳,结合已学知识来得出反比例函数的概念,并且深入的理解其意义.在此过程中,教师需要给学生一些必要的指引,具体到课堂教学实际中就是通过问题的引领,帮助学生做好问题的探究.学生是这个环节的主体,教师是辅助者,在实际教学中要尊重学生所提出的问题和看法,不应该把教师的观点强加给学生.

基于以上分析,确定本节课的教学重点为:理解反比例函数的概念.

二、目标和目标解析 1.教学目标

(1)理解反比例函数的意义;

(2)能够根据已知条件确定反比例函数的解析式. 2.目标解析

达成目标(1)的标志是:通过对实际问题和数学问题的分析,抽象概括得出反比例函数的概念,知道自变量和对应函数成反比例的特征.

达成目标(2)的标志是:能根据问题中的变量关系,确定反比例函数的解析式.

三、教学问题诊断分析

学生已经学习过了一次函数、二次函数、分式等预备知识,对函数的图象、性质和特征具有了一定的认知能力.再加上小学已经学习过的反比例关系,学生对反比例函数的引入不会感到突然.在对实际问题和数学问题进行分析过程中,需加强对函数概念的理解:对于自变量每一个确定的值,有唯一确定的值与之对应.反比例函数与一次函数、二次函数的不同在于两个变量的乘积为定值.同时,学习过程中要回顾类比反比例关系,分式的概念及其运算.

但是反比例函数与学生已学过的一次函数、二次函数有着根本的不同.虽然从形式上和正比例函数很类似,但是其自变量取值范围不再是全体实数,所以相比于学生熟悉的函数类型,反比例函数的研究方式会有所不同,而本节课的学习就是所有这些改变的起点.

本课的教学难点是:抽象得到反比例函数概念的过程.

四、教学过程设计 1.创设情境,引入新知

问题1京广高铁全程为2 298km,某次列车的平均速度v(单位:km/h)与此次列车的全程运行时间t(单位:h)有什么样的关系?

问题2冷冻一个0℃的物体,使它的温度下降到零下273℃,每分钟变化的温度(单位:℃)与冷冻时间(单位:分)有什么样的关系?

师生活动:教师提出问题,学生思考、得出答案.教师板书学生给出的答案,同时提醒学生关注零下273℃的表示方法.

设计意图:用实际问题引出现实中的反比例关系,为后续的反比例函数的意义教学做好铺垫.创设问题情境,让学生感受量与量之间的函数关系,体会实际问题中蕴涵的函数关系,激发探究兴趣.

2.观察感知,理解概念

针对学生的答案,提出一系列问题: 问题3这些关系式有什么共同点? 问题4这两个量之间是否存在函数关系?

问题4.1这个变化过程中的常量和变量分别是什么? 问题4.2变量x、y在什么范围内变化? 问题4.3 y是x的函数吗?

师生活动:教师针对学生的答案进行提问,引导学生进行思考,并鼓励学生提出问题,以推动对问题的进一步思考.开始渗透研究函数的一般步骤,帮助学生探究函数关系.学生需要调动原有知识储备,经过思考和讨论来回答问题.

设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数的模型. 3.归纳概括, 建立模型 问题5这个函数应该如何表示? 问题6你能给这个函数起个名字吗? 归纳整理出反比例函数的意义: 一般地,形如

(为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.

师生活动:教师提出问题,学生思考、议论后交流.教师应引导学生用规范的数学语言表达反比例函数的概念,并引导学生发现自变量x的取值范围是不等于0的一切实数.

设计意图:使学生从上述不同的数学关系式中抽象出反比例函数的一般形式,让学生感受反比例函数的基本特征,发展学生用数学语言描述反比例函数的能力,体会从实际问题中抽象出反比例函数的方法.

4.分析例题, 培养能力

例1 已知y是x的反比函数,并且当x=2时,y=6.(1)写出y关于x的函数解析式.(2)当x=4时,求y的值.师生活动:教师提出问题,学生思考、交流,解答问题.教师引导学生理解“y是x的反比函数”这句话的意义,总结得出求反比例函数解析式的方法,正确用反比例函数解析式解决问题.

设计意图:使学生会根据已知条件求反比例函数的解析式,进一步熟悉函数值的求法.例2已知(1)写出(2)求当与成反比例,并且当

时,和的函数解析式;

时的值.

师生活动:教师提出问题,学生独立思考,解答问题.教师巡视学生完成情况,并请学生展示解答过程,给予适当评价.

设计意图:已知条件中y与

成反比例.设为

(k≠0),看作整体,进一步

加深对反比例函数概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.5.归纳小结,反思提高

教师与学生一起回顾本课所学主要内容,并请学生回答以下问题:

(1)我们今天学习了反比例函数的哪些知识?如何获得反比例函数的概念?(2)反比例函数中的两个变量的关系是什么?(3)反比例函数对自变量取值有何要求?(4)如何根据已知条件求反比例函数的解析式?

设计意图:让学生能够梳理知识体系,进一步加深对知识的理解. 6.布置作业

教科书习题26.1 复习巩固第1,2题.五、目标检测设计

设计意图:进一步明晰概念,用反比例函数的概念判定函数是否为反比例函数:从形式上看是写成一般式,实质上是两个变量的乘积为定值.

2.已知y与x?成反比例,并且当=2时,y=-6.(1)写出y关于的函数解析式;(2)当=4时,求y的值;(3)当y=4时,求x的值.设计意图:进一步加深概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.

正反比例的意义教学设计篇五

《反比例的意义》教学设计

【教材理解】

《反比例的意义》是新课标人教版小学数学六年级下册第47-48页的内容。本节课的内容是在教学了成正比例的量的基础上进行教学的,是前面“比例”知识的深化,是后面学习“用它解决一些简单正、反比例的实际问题”的基础,它起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。为此,教学时先引导学生回忆已学过的数量关系,通过举例、交流,知识迁移,体会生活中存在着大量的反比例的关系,在此基础上探求新知,最后深化新知。【设计理念】

在教学过程的设计上,首先通过对正比例的复习,直接导入新课教学,揭示课题“反比例”,例题学习,引导学生观察表中的三种量中的变化规律,通过学生讨论交流、自主探究,在教师的引导概括出反比例的意义,然后进一步抽象概括反比例关系式:xy=k(一定),接着运用反比例的知识,判断两种量是不是成反比例的量,然后让学生自己举例说说生活中的反比例,进一步加深对反比例关系的认识。【学情简介】

这节课是在学生学习正比例的基础上进行教学的。教学时充分相信学生、尊重学生,改变传统的教学模式,学生由被动学习转化为主动学习,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观主动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。同时采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。【教学目标】

知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。【教学重难点】

重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。难点:掌握反比例的特征,能够正确判断反比例关系。【教学方法】小组合作,归纳推理,探究交流 【教学准备】多媒体课件 【课时安排】1课时 【教学过程】

(一)复习猜想导入,引出问题。

1、成正比例的量有什么特征?什么叫正比例关系?

2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。

达成目标:猜想导课,激发探究愿望

(二)共同探索,总结方法。

1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

2、情境导入,学习探究。(1)我们先来看一个实验。

高度(厘米)

底面积(平方厘米)10

体积(立方厘米)

提问:根据列表,你从中你发现了什么?

(2)学生讨论交流。

(3)引导学生回答:表中的两个量是高度和底面积。

高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

每两个相对应的数的乘积都是300.(4)计算后你又发现了什么?

每两个相对应的数的乘积都是300,乘积一定。

教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。

教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)

(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)

小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?

(6)归纳总结反比例的意义。(7)比较归纳正反比例的异同点。

达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。

(三)运用方法,解决问题。

1、生活中,哪些相关联的量成反比例关系,举例说一说。

2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?

3、出示反比例图像,与正比例图像进行比较学习。

达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。

(四)反馈巩固,分层练习。

判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。

(五)课堂总结,提升认识

总结:今天我们学习了什么?(揭示课题—反比例)你有什么收获?学习中,你要提示大家注意什么?你对今天的学习还有什么疑问吗? 【板书设计】

反比例

高度(厘米)

底面积(平方厘米)10

体积(立方厘米)

300

300

300

300 300 高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。高×底面积=水的体积(一定)反比例关系式:x×y=k(一定)

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
2025年正反比例的意义教学设计(5篇) 文件夹
复制