在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
当命题“若a则b”为真时,a称为b的充分条件,b称为a的必要条件。
2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法
若a?b,则p是q的充分条件。
若a?b,则p是q的必要条件。
若a=b,则p是q的充要条件。
若a?b,且b?a,则p是q的既不充分也不必要条件。
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
2.在应用条件时,易a忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
5.你知道“否命题”与“命题的否定形式”的区别吗?
6.求解与函数有关的问题易忽略定义域优先的原则
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称这一点
12.求函数的值域必须先求函数的定义域。
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
19.绝对值不等式的解法及其几何意义是什么?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是?
34.你还记得某些特殊角的三角函数值吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.正弦定理时易忘比值还等于2r.
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
(2)制定目标。如果应付老师来做题无疑导致做题质量不高,那么在做题之前应该制定一定目标,如上面说的那样,你通过哪些题目来训练正确率?通过哪些题目来练习速度?通过哪些题目来完善步骤等等。有了目标,更好的实现目标,在这个过程中,你肯定有很多收获。
(3)对于学生来说,资源很多,例如说学校的老师、同学、资料等等。但是利用资源之前要做到明白什么是你需要的资源?打算怎样去利用资源等等。
高考数学复习方法
抓好专题复习,领会数学思想
高考数学第二轮复习重在知识和方法专题的复习。在知识专题复习中可以进一步巩固第一轮复习的成果,加强各知识板块的综合。尤其注意知识的交叉点和结合点,进行必要的针对性专题复习。例如:1).函数与导数。此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
2).三角函数、平面向量和解三角形。此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
3).数列。此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练等。
抓规范训练,提高解题速度与准确率
【1】加强思维训练,规范答题过程
解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。
【2】加强客观题的解题速度和正确率的强化训练
选择、填空题都是客观试题,它的特点是:概念性强、量化突出、充满思辨性、形数皆备、解法多样形、题量大,分值高,实现对“三基”的考查。每次小题训练应不断强化自己选择题的解法,如特值法、数形结合等,另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速。通过训练,要达到这样一个目的:大部分同学都能在45分钟以内完成十道选择题和五道填空题,并且失误控制在两题之内。
注:①当或时,直线垂直于轴,它的斜率不存在.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
3. ⑴两条直线平行:
(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)
推论:如果两条直线的倾斜角为则∥.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)
4. 直线的交角:
5. 过两直线的交点的直线系方程为参数,不包括在内)
6. 点到直线的距离:
⑴点到直线的距离公式:设点,直线到的距离为,则有.
注:
1. 两点p1(x1,y1)、p2(x2,y2)的距离公式:.
特例:点p(x,y)到原点o的距离:
特例,中点坐标公式;重要结论,三角形重心坐标公式。
3. 直线的倾斜角(0°≤180°)、斜率:
4. 过两点.
当(即直线和x轴垂直)时,直线的倾斜角=,没有斜率
⑵两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有.
注;直线系方程
2. 与直线:ax+by+c= 0垂直的直线系方程是:bx-ay+m=0.( m?r)
3. 过定点(x1,y1)的直线系方程是: a(x-x1)+b(y-y1)=0 (a,b不全为0)
7. 关于点对称和关于某直线对称:
⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
如果一个随机试验满足:
(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的.等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件a包含了其中m个等可能基本事件,那么事件a发生的概率为。
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件a所包含的结果数m;
(4)用公式求出概率并下结论。
求古典概型的概率的关键是如何确定基本事件总数及事件a包含的基本事件的个数。