最新我国数学双基教学利与弊
文件夹
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
作为一名一直奋战在初三教学第一线的数学教师,很喜欢张奠宙先生主编的《中国数学双基教学》封面上的两句话:继承传统,认识自己,才能面向未来。越是民族的,往往越是世界的。
当我还是一名高中生时,对数学学习接受的就是双基教学有了感性的认识。基础知识与基本技能成为当时许多数学老师的口头禅。在大学里又学习了许多教育教学理论,但数学教学中的双基教学仍然为许多教授所称道。大学毕业后担任初中数学教学工作,特别是近几年,一直担任初中毕业班的数学教学,自己也开始进行双基教学。在老教师们的言传身教影响下,在不断的课堂教学实践中,自己对双基教学不仅有了更多的感性认识,也开始有了一些理性的认识。期间,又参加了卢湾区教育学院举办的教师专业发展研修班的学习,在导师周齐多年担任中考数学命题组长的指导下,对初中数学教学如何贯彻和落实双基教学有更深刻的体会。今天又系统的学习了张奠宙教授的《中国数学双基教学》一书,感受颇深,现整理如下。
数学双基自产生之日起就深深地打上了教学的烙印,并且是在教学的过程中,不断发展和完善的,可以说,数学双基是教学的产物。数学双基其大体内涵可以认定为:相对于数学的探究、创造和应用来说,双基更加重视基本知识的记忆,基本技能的熟练掌握,表现在数式计算、逻辑推理、综合解题三个维度。
数学双基的内涵有狭义和广义之分,狭义的双基指记忆和掌握基本数学公式和程式以及能够快速且准确的基本运算技能;广义上则泛指和创新相对的那一部分,常被称为双基平台。在双基50余年的成长过程中,孕育了极其丰富的数学教育教学理念以及相关的教学策略,对此,张奠宙先生在书中高屋建瓴地指出:在双基理论研究上的四个维度:
(1)速度与效率:没有速度就没有效率;
(2)记忆与理解:在记忆的基础上进行理解;
(3)严谨与直观:在直观确认的基础上保持严谨;
(4)重复与变式:通过变式的重复获得技能;速度、记忆、严谨与重复是双基的核心,可以通过效率、理解、直观、变式等发展它们。
可以说,我国广大中小学数学教师的数学教学观主要是由双基激发的,并且是在双基的教学过程中发展起来的,他们对双基训练具有深刻的理解和丰富的体验。
《中国数学双基教学》读书笔记
作为一名一直奋战在小学教学第一线的数学教师,由于课题研究,很庆幸利用课余时间阅读了张奠宙先生所编写的《中国数学双基教学》。这本书是由国内外著名数学教育专家及一线数学教师执笔写成,力图在理论和实践上对“数学双基教学”进行全面总结,认真阅读此书,受到了很多启发。特别是封面上的几句话:“继承传统,认识自己,才能面向未来。”“越是民族的,往往越是世界的。”
当我还是一名初中学生时,对数学学习“双基教学”有了感性的认识。“基础知识与基本技能”成为当时许多数学老师的口头禅。在师范里又学习了许多教育教学理论,但数学教学中的“双基教学”仍然为许多教授所称道。师范毕业后担任小学数学教学工作,特别是近几年,一直担任小学毕业班的数学教学,自己也开始进行“双基教学”。在老教师们的言传身教影响下,在不断的课堂教学实践中,自己对“双基教学”不仅有了更多的感性认识,也开始有了一些理性的认识。在这期间又系统的学习了张奠宙教授的《中国数学双基教学》一书,感受颇深,现整理如下。
一、要用发展的眼光来理解数学双基
数学双基其内涵不只局限于数学基本知识和基本技能本身,它还应包括在数学双基之上的发展,启发式、精讲多练、变式练习、提炼数学思想方法等,都属于“发展”的层面,却又和数学双基密切相关。中国数学双基教学,随着时代的发展,不断注入新的活力,初步形成了基础知识、基本技能、基本能力、基本态度并重的数学教学目的观。它强调数学教育的.社会功能和育人功能并重,基础性、发展性和创造性相结合,个性与共性相结合,认知与情感相结合,数学知识的习得与道德品质和世界观的形成相结合,数学知识的学习与应用、创新相结合等。由于时代对数学教育的要求在发生变化,教育研究成果在更新、教育手段在扩展,双基教育的含义自然有新的理解乃至扩展,更应该有新的实践内容和模式,如果双基教学不能与时俱进,那么可能产生异化。
二、数学活动的本质是学生的数学思维活动
数学思维是对人类思维实践的理性总结,也是对思维过程的形式概括,包括概念与判断、辨别与比较、分析与综合、归纳与演绎等,它们既是数学思维活动的一般规律,又是获得新的数学知识的有效手段。数学教学中进行切实有效的逻辑思维训练,既是数学学科本身的要求,也是提高学生思维水平的最有效的手段。
我在平时的教学过程中,也经常发现学生在学习过程中会出现这样或那样的问题,特别是低年级的小学生,经常题意不理解、方法难掌握、或存在一些不良的学习习惯等。咎其根本原因,其实是学生的思维能力没有得到很好的训练与发展。那么在双基教学中如何发展学生的思维能力呢?从书中我们得知:
1、注重思维的严密性。数学思维的严密性是数学教学的重要特点之一,要使学生有扎实的数学基础,必须使学生养成严密的思维习惯,重视定理、公式成立的条件、推理和运算过程的依据。
2、培养思维的灵活性。思维的灵活性是思维的重要品质,在加强数学双基中,要注重培养学生的发散思维能力,让学生能从各种不同的方向和角度进行思维。既能正向思维又能逆向思维,既会纵向思维又会横向思维。
三、如何处理好“双基”教学与“创新”教学
新的课程标准尤其强调了要培养学生的创新精神和实践能力。因此,我们应在注重“双基”教学的前提下充分培养学生的创新精神和实践能力。同时仅仅停留于基础知识和方法的传授以及迁移应用技能的训练,对于创新来说是远远不够的。如果把扎实“双基”等同于创新教育,那么创新教育也就失去意义,只有在扎实“双基”的同时,善于挖掘“双基”训练的创新因素,抓住“双基”与“创新”的结合点,通过知识的重组与再造,着力于培养学生创新精神、创新品质、创新意识,训练学生的创新思维和创新能力,才能真正地给予学生创新的勇气、创新的灵气和创新的才气,使学生有意识、有胆魄、有能力驰骋于创新的广阔时空。
首先,教师应在“双基”教学中,注重知识重组再造方法的指导。比如,指导“提问”方法,训练学生思维的深广度;指导“发现”方法,训练思维灵活性;指导“提要”方法,训练思维逻辑性;指导“质疑”方法,训练思维批判性;指导“想象”方法,训练思维独创性。
其次,要鼓励学生大胆表达自己的思想。在自主学习中,能够获得与众不同的看法,形成独特的见解,是知识重组和再造的结果,是富有创造性的表现。第三,要鼓励学生大胆质疑。对书本,对教师传授的知识能产生疑问,提出质疑,同样是富有创造性的表现,教师不应以权威去压抑和扼杀这种创造性。第四,要鼓励学生大胆想象和幻想。想象和幻想是创新之母,如果善于抓住课文的空白处和耐人寻味处,启发学生大胆想象,就能为学生留有创新的空间,从而使学生由吸收储存知识走向重组再造知识,由模仿走向创新,并飞跃于创新的广阔时空。
张奠宙先生说:数学双基的要求应该与时俱进地进行调整和丰富,我们不能盲目地打基础,形成“花岗岩的基础上盖茅草房”的局面。没有基础的创新是空想,没有创新的基础是傻练。随着时代的进步,“双基教学”也需要与时俱进,需要我们在继承传统的同时,不断充实,不断完善。处理好两者的关系,是数学教育工作者长期研究的课题。
小学数学中“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索与合作交流是学生学习数学的重要方式”。为体现这一新理念,我努力给学生提供充分的参与数学活动的时间和空间,使学生在认真听讲,课堂练习的同时,有更多的机会去亲自探索,去操作实践,去与同学交流和分享探索的结果及成功的快乐,从而真正实现数学学习方式的转变。
一、操作实践启迪思维
儿童的思维是从动作开始的,切断了动作和思维的联系,思维就得不到发展。开放学生的双手,让学生动手操作的过程,其实质是学生手、眼、脑等多种感官协同活动并参与学习活动的过程。它不仅能使学生学得生动活泼,而且能启迪大脑思维,对所学过的知识理解更深刻。
二、自主探索,培养学生自学能力
自主探索是学生根据自己的认识水平和已有的知识经验,在教师的指导和帮助下,通过自己独立探索和发现,从而获取知识的过程。教师在此过程中只起点拨引导作用。自主探索,主要体现在培养学生自学能力上。因此,只要学生自己能看懂的,就指导学生自己看;只要学生自己能讲出的,就鼓励学生大胆说;只要学生自己能够实践的,就创造条件让学生自己动手做。总之,只要学生自己能够解决的问题,就放手让学生自己去解决。
(1)两步混合运算中,没有括号时,只有加减法,怎样算?
(2)两步混合运算中,没有括号时,既有加减法,又有乘除法,怎样算?
(3)两步混合运算中,有括号时先算什么,再算什么?
(4)三步混合运算与两步混合运算有什么区别。
(5)提出自己的疑问,并在小组内交流。
学生们根据自学提纲积极参与到自学活动中,在解决问题中获取了新知。营造出主动积极的学习氛围,实现了数学学习方式的转变。
三、合作交流,激发创新情感
讨论交流,合作学习是在学生独立学习,并参与所学知识充分感知的基础上,通过讨论或互相帮助去共同解决问题,以促进教学任务的完成。它是现代学习的重要方式。它不仅有利于发展学生的兴趣和认知能力,更能激发学生创新情感。在数学教学实践中,我深深体会到了合作交流是研究性学习的重要形式。动手实践,自主探索与合作交流是相互联系,相互贯通地体现在数学教学活动中,它并不一定以单一的形式呈现。这种重要的学习方式,让学生们在主动的、互相启发的学习活动中,获得知识,发展能力,逐步形成创新意识,真正实现数学学习方式的转变。
短短的学期教学工作快结束了,在这繁忙而充实的一学期中,我感触较多,现将本学期自己在教学中的点滴得失作一个反思。
本学期我所任教的是三年级数学,许多使用过这套教材的教师都普遍认为:教材较难,不好把握。但这对于我来说,刚好是一个不错的挑战。本学期的教学任务也非常繁重,其中知识点包括两三位数乘一位数、两位数除以一位数,年、月、日的认识,分数的初步认识,长方形、正方形的周长以及可能性与数学广角。其中两三位数乘一位数、两位数除以一位数是本册的重点,年、月、日的认识,长方形、正方形的周长又是本期的难点。
教学之前,我充分的备好课,同时我深知备好课是上好课的关键,而备好课重要的一点是要备学生,由于接手本班了解到学生的整体成绩一般化,而且不平衡,因此,我把基础知识的传授作为我的一个很重要的方面,同时,也为优秀的学生作好“能量”的储备。
教学之中,我运用多种教学手段去吸引学生,用多种教学方法去感染学生,促使他们喜爱数学,愿意学习数学,比如,在进行分数的初步认识教学中,我利用直观教学,提高学生的学习兴趣;在进行长方形、正方形的周长的教学中,我让学生动手折,画等方法,提高学生的参与意识。对待优生,我充分让他们吸饱、吃够;对待中等生,我让他们牢固掌握基础知识的同时,逐步培养他们的思维能力、表达能力等;特别是对待差生学习积极性不较高,我更加的`重视他们,让他们体验成功的喜悦,培养他们学习的信心。
教学之后,我基本做到每课后立即反思,每单元反思,及时总结自己在教学工作中的得失,以便在后面的教学中发挥优点,克服不足,同时,积极学习其他有经验的教师的优秀经验,听他们的课,有什么教学中的困惑去请教他们。经过我和学生的共同努力,学生的成绩有所提高,学生的学习氛围有所加强,学习兴趣有所提高,基本会积极主动的学习。
由于经验的缺乏,在教学工作中仍会有许多不足,感觉时间少、任务重,对待差生的辅导仍有待加深,课堂40分钟的效率不够高,小组合作仍有待加强,没有发挥每一位学生的学习积极性,个别学困生缺乏与他人的合作的意识等。
在下学期的教学工作中,我一定克服我的不足,关心每一位学生,努力让每一位学生在学习中感受到学习的快乐,让学生在集体中积极参与,主动学习数学,感受成功的喜悦。
一个学期的教学工作已近结束,对于本学期的教学工作进行了全面的反思。如何让学生乐学、愿学、学会,我觉得兴趣是关键!可以说兴趣是学生最好的老师,是开启知识大门的金钥匙。小学生如果对数学有浓厚的兴趣,就会产生强烈的求知欲望,表现出对数学学习的一种特殊情感,学习起来乐此不疲,这就是所谓的“乐学之下无负担”。下面,我谈谈自己在激趣方面的几点体会。
一、创设情境,让学生在实际中解决数学问题。
《数学课程标准》在教学建议中指出:“要创设与学生生活环境、知识背景相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐渐体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。”
生动的生活情景,有助于学生了解现实生活中的数学,感受数学与日常生活的密切联系,增加对数学的亲近感,体验用数学的乐趣。因此,在教学中,我经常设计一些情境,让学生在玩中轻松学习。例如:教《平均分》时,在主题图讲完后,我把24朵红花,蓝花,绿花,紫花分别放在四个盒子里,然后分别请3个、4个、6个、8个同学上台,说:“我把把x花送给你们,们自己拿走,但你们拿的x花朵数要相等”然后引导学生讨论怎么样拿才合理,并列出相应的算式。这样不仅让学生很快掌握平均分的意义,还可以培养学生之间相互合作。
再如:在教学《三位数退位减法》时,从学生熟知的生活事例,感兴趣的事物引入,为学生提供富有情趣的具体情境。在具体情境中学生的学习兴趣浓厚、积极性高涨,课堂气氛活跃。使学生以最佳的思维状态投入学习。
二、实践操作,让学生体验知识生成过程
通过实践操作,开放学生“全脑”,引导他们眼、手、脑、口等多种感官参与,让学生体验知识的动态生成,有助于学生理解概念。例如:在教学《角的认识》时,角对于二年级学生来说比较抽象,学生接受较为困难。因此为了帮助学生更好地认识角,整节课我将观察、操作、演示、实验、合作探究等方法有机地贯穿于各个教学环节中。在引导学生体验的基础上加以抽象概括,充分遵循(从)感知→(经)表象→(到)概念这一认知规律,通过找一找、看一看、摸一摸、折一折、做一做、比一比、想一想、说一说,画一画,学生活泼愉快地亲自参与、亲自体验到教师根据教学内容创造的不同教育情景中,在大量的实践活动中经历知识形成过程。让学生在观察中分析、在动手中思考。从而进一步调动学生的学习兴趣,努力做到教法、学法的最优结合,使全体学生都能参与到探索新知的过程。品尝到了自主。合作,探究学习的成功和喜悦。自信心和成就感也随之增强了。
三、回归生活,让学生体验知识应用过程
重视学生的数学体验,《课标》也十分重视数学与生活的联系,指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”一句话,道出了数学教学的生活性,体现了“数学源于生活,寓于生活,用于生活的思想。”要使学生在活动中和现实生活中学习数学,发展数学。要通过解决实际遇到的问题,培养学生初步的逻辑思维能力,运用数学思维、方法,进一步分析解决问题的能力;在数学应用过程中,培养学生的创新意识;让数学回归生活,并获得学有所用的积极情感体验。例如:在《角的认识》这一课中,如果剪去两个角,会得到几个角呢?”这一体验过程的引导,把空白留给了学生,让他们的思维有更大的空间,使不同的思维方式开展大比拼。这一过程中,不仅是学生的数感、空间观等的培养都通过体验得以实现;而且正确的思维方式在剧烈的碰撞中又得到了锤炼。再如:在学习《加法估算》时,让学生谈谈这节课你最深的感受,在生活中你有这种经验吗?今天的学习对你的生活有那些帮助?学生就在这轻轻松松的谈话中,体验着丰富的数学内容,而且在这种氛围中师生之间的情感也达到了和谐统一。
总之,在小学数学教学中开展这种“体验学习”。充分发挥学生的主体作用,让学生置身于一定的情境中,调用各种感官去体验、感受;注重实践,多创设贴近学生生活实际的、具体形象的问题情境,才能填补学生经验的不足,从而促进学生在体验中感悟:生活中的数学无时不在、无处不在。
四、以猜为动力,引导学生探索数学的奥秘。
众所周知,每一个孩子都爱问为什么,每一个孩子都想探究一些秘密,根据孩子的这种心理,我多次采用“估一估,猜一猜”的形式,让学生在好奇中思考,在思考中得到逐步提高。如在教学《猜数游戏》时,我先告诉学生我写了一个三位数,十位上是6,让学生猜猜这个数是多少。猜的过程中告诉学生是猜得大了还是小了。这样反复进行几次,学生就在“猜”中掌握了数的认识和大小比较,加深了对数的认识掌握,为今后学习用数学做好了铺垫。
五、在比赛中增长信心,培养竞争意识。
儿童的好胜心、自尊心强,爱表现自己,所以要经常创造机会让学生充分表现,让他们在心理上得到满足,要不断鼓励他们树立信心,增强勇气,胜不骄,败不馁。如在小组中可以进行“摘桃子”比赛,在个人中可以比一比谁做得又对又快,从而培养学生的竞争意识数学“体验”教学是指学生在教师引导下,在数学活动中主动参与,亲身经历,获得对数学事实和经验的理性认识和情感体验。它让学生以认知主体的身份亲自参加丰富生动的活动,完完全全地参与学习过程,真正成为课堂的主角,从而在体验和创造中学会数学。
当然。教学中还存在着许多问题,特别是学困生转化问题,还是一大难点,有待在今后的教学工作中进一步研究探讨。
这三天,本人通过对小学数学新课程标准的学习,就改变学生的学习方式作如下几方面的思考:
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。 数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。 教师是学生数学活动的组织者、引导者与合作者。教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。要关注学生的个体差异,使每一个学生都有成功的学习体验,得到相应的发展;要因地制宜、合理有效地使用现代化教学手段,提高教学效益。
(一)让学生在现实情境中体验和理解数学.
教学中,要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。 例如,计算教学应注意与学生的现实生活相联系,让学生感受到通过计算可以解决一些实际问题。如,我们可以让学生估计一下,哪个答案接近自己的年龄?(①500分;②500周;③500时;④500月)学生可能会运用不同的方法进行猜测。此时,教师可以进一步引导学生如何知道自己的猜测是准确的或比较准确的。为了回答这个问题,学生将会进行必要的计算,从而体会计算的必要性。又如,在空间与图形的教学中,应充分利用学生生活中的事物,引导学生探索图形的特征,丰富空间与图形的经验,建立初步的空间观念。教学中可以组织学生分小组观察讲台上的物体,让学生站在不同角度看这个物体,体会从不同的角度看同一个物体时,所看到的形状的变化,并用简单的图形画下来。也可让学生根据下面的要求在方格纸上画出示意图:假设科技馆在学校的正东方向500米处,小红家在学校北偏西60°方向300米处,医院在学校正南方向1000米处,汽车站在校南偏西30°方向400米处。学生可以根据这些信息,在方格纸上确定适当的单位距离,标出相对位置后,教师应及时组织学生,发展学生的空间观念。
(二)鼓励学生独立思考,引导学生自主探索、合作交流.
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动。教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动之中。
例 在下面的横线上填数,使这列数具有某种规律,并说明有怎样的规律。2/5,1/5,( ),1/xx年级的学生指导如何进行预习、听课、记笔记、做复习、做作业等;要考虑到观察能力、想象能力、思维能力、推理能力及总结归纳能力的培养。一位老师教学水平的高低,不仅仅表现他对知识的传授,更主要表现在他对学生学习能力的培养。
二、变“走教案”为“生成性课堂”
当师生的主动性、积极性都充分发挥时,实际的教育过程远远要比预定的、计划中的过程生动、活泼、丰富得多。教师要利用好即时生成性因素,展示自己灵活的教学机智,不能牵着学生的鼻子“走教案”。要促成课堂教学的动态生成,教师要创造民主和谐的课堂教学氛围。教师要在教学中真正建立人格平等、真诚合作的民主关系。同时教师要高度重视学生的一言一行,在教与学的平台上,做到教学相长,因学而教,树立随时捕捉教学机会的意识,就必定会使我们的课堂教学更加活泼有趣,更加充满生机,也更能展示教师的无穷魅力。
三、变“权威教学”为“共同探讨”
新课程倡导建立自主合作探究的学习方式,对我们教师的职能和作用提出了强烈的变革要求,因而,教师的职能不再仅仅是传递、训导、教育,而要更多地去激励、帮助、参谋;师生之间的关系不再是以知识传递为纽带,而是以情感交流为纽带;教师的作用不再是去填满仓库,而是要点燃火炬。
四、变“教师说”为“学生多说”
教学中教师要鼓励、引导学生在感性材料的基础上,理解数学概念或通过数量关系,进行简单的判断、推理,从而掌握最基础的知识,这个思维过程,用语言表达出来,这样有利于及时纠正学生思维过程的缺陷,对全班学生也有指导意义。教师可以根据教材特点组织学生讲。教师不仅要了解学生说的结果,也要重视学生说的质量,这样坚持下去,有利于培养学生的逻辑思维能力。
根据小学生的年龄特点,上好数学课应该尽量地充分调动学生的各种感官,提高学生的学习兴趣,而不能把学生埋在越来越多的练习纸中。在数学课上,教师要引导学生既动手又动口,并辅以其它教学手段,这样有利于优化课堂气氛,提高课堂教学效果,也必然有利于提高教学质量。
总之,面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受“快乐数学”。
数学究竟是什么呢?数学是对现实世界的一种思考、描述、刻画、解释、理解,其目的是发现现实世界中所蕴藏的一些数与形的规律,为社会的进步与人类的发展服务。数学教育的核心问题是学生学习过程的优化,即怎样使学生主动地、有效地、合理地学习需要的数学。在数学教育逐步由“应试教育”向“素质教育”转轨的过程中,我们需要更新观念,开拓创新,大面积提高教学质量,更改现有的教育模式与管理理念,给学生发展的时间和空间,加快课程改革的研究与实施,推进素质教育。下面是教者在教学过程中所得的体会:
一、让数学教学联系实际生活
新《数学课程标准》指出:“数学教学要紧密联系学生的生活环境,从学生经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,掌握基本的数学知识和技能,发展他们的能力,激发对数学的兴趣以及学好数学的愿望。”
数学源于生活,生活中的数学是最具有鲜活力的,一切脱离生活实际的教和学都显得苍白无力。在我们的生活中,到处都充满着数学,教师在教学中要善于从学生的生活中抽象数学问题,让学生熟知的生活数学走进学生视野,进入课堂,使之产生亲近感,变的具体、生动,诱发学生的内在知识潜能,使学生主动地动手、动口、动脑,想办法来探索知识的形成过程,以达到对自我生活、心理需要的满足,获得成功的喜悦感。同时也增强其学习数学的主动性,发展求异思维,培养实事求是的科学态度和勇于探索、创新的精神。为此,我经常引导学生提供他们所熟悉的经验,充分利用学生现有的知识经验和他们所熟悉的事物组织教学,使学生能较好地感知和理解所学的内容。
数学学习应该是一种有广泛的思维空间和实践空间,且生动有趣的学习活动,学生是可以用心去体会感悟的。而以往的数学学习,常常使学生们感到离自己的生活实践太远,枯燥乏味。其实,数学学习完全可以将学生的学习范围延伸到他们力所能及的社会生活和各项活动之中,将教育和生活融为一体,让学生获得更多的直接经验和感受体验。教给学生思维方式与思维的习惯,让学生去体会感悟数学的智慧与美。
二、精心准备,认真备课
教学是一门艺术,备好课是搞好艺术的基本条件。每一课都要做到“有备而来”,每堂课都在课前做好充分的准备。要备起点,所谓起点,就是新知识在原有知识基础上的生长点;要备重点,重点往往是新知识的起点和主体部分,备课时要突出重点;要备难点,所谓难点,即数学中大多数学生不易理解和掌握的知识点;要备交点,即新旧知识的连接点;要备疑点,即学生易混、易错的知识点。
三、培养学生自主学习数学的能力
每个学生都是一个独立的人,学习是学生自己的事情,这是教师不能代替也是代替不了的,教师只是起指导作用,现行教学改革要求改变单纯接受式学习,讲究从“一刀切”教学向关注个体差异的教学转变,强调发现学习、探究学习、研究学习及自主学习。因此,培养学生自主学习数学的能力显得十分重要,这不但有利于学生能更快更好地掌握吸收所需知识,学会学习,还能培养他们的探索能力、解决问题的能力、应用意识和创新精神。
四、培养学生在数学课堂上的参与意识
数学课堂通常是被认为比较枯燥、缺乏生动和激情,因此,努力创建既宽松、富有人情味又便于学生善于思考、乐于探究的教学环境显得尤为重要。让学生在课堂学习活动中形成正确的学习方式和对数学的态度,只有当学生体会到数学的乐趣,学生才会主动感悟数学,数学教学才能为学生的未来发展服务。
课堂教学效果很大程度上也取决于学生的参与情况,这就首先要求学生要有参与意识,加强学生在课堂教学中的参与意识,使学生真正成为课堂教学的.主人,这是现代数学教学的趋势。为此,在数学课堂上应充分让学生“动”起来。即让学生的个性表露出来,思维活跃起来,手脚解放出来,这将会极大地提高教学效率。
创设民主和谐的课堂教学氛围,使学生勤于动脑,善于发言;养成良好的课堂习惯,使学生在讨论交流的氛围中学习。
复习课是根据学生的认知特点和规律,在学习的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决问题的能力为主要任务的一种课型,经过多年的学习与教学实践,本人对复习课教学这一教学流程有了一个比较系统、比较全面、比较深刻的理解与认识。下面谈谈本人对有关复习课教学的一些看法与理解:
第一、复习课这一课型与新授课与试卷讲评课是有所不同的,复习课是介于新授课与试卷讲评课之间的一种课型,起到承上启下的作用,复习课应该结合以前的新授课的教学效果与结果,特别是新授课暴露出来的问题进行设计和教学,一堂好的复习课可以很好地促进学生对知识的理解、掌握与应用。
第二、复习课应该遵循心理学原则,根据学生的认知特点和规律,使学生轻松地进入复习课课堂学习状态,以学生为主体,教师为主导的启发式与探究式相结合的教学方式进行复习课教学,激发学生的学习兴趣,留给学生充分的思考时间,使学生能够积极地参与复习课课堂学习,以便取得更好的复习课教学效果。
第三、复习课的主要功能是查缺补漏,巩固基础,加强知识间的联系,促进知识的条理化与知识网络的形成,深化提炼数学思想方法,提高学生综合应用数学知识的能力。上复习课之前教师要通过平时的作业批改等一些教学活动或一些教学方面的调查活动对学生在这一章节中存在的问题了如指掌,以便在复习课教学中有的放矢,针对学生的知识学习中的薄弱之处进行重点教学,教师要引导学生构造本章的知识结构图,可以让学生在课前进行自主构造知识网络,或让学生在课后交一份知识网络图作业,以便提高课堂效率。复习课教学时要注重提炼数学思想方法,数学思想方法是数学的核心与精华所在,有一句话说得好:“授人以鱼,不如授人以渔”,教师应在良好的师生互动中,通过启发式等一些教学方法让学生自然而然地学会一些数学思想方法,通过设计有关此类数学思想方法的练习题组,让学生逐步学透数学思想方法,真正做到举一反三、触类旁通,学会学习,从而提高学生应用数学知识的能力。
第四、上复习课时除了要巩固基础,还要注重一题多问、一题多解、一题多变、一题多思教学,多方向多角度地在师生良好的互动的基础上进行习题教学,注重对有关习题的拓展与延伸,注重培养学生思维的全面性、灵活性、严密性与深邃性,注重培养学生的数学学习方面的探究精神,探究精神在培优方面尤其重要。
第五、复习课要面向全体学生,满足不同层次学生的学习需求,尽可能调动全体学生上复习课的积极性,让学生尽情发挥、各得其所,“不放弃每一个学生”是我们教学的一个根本目的。
第六、复习课教案要具体、细致,教学过程要流畅,要有互动,要有艺术性,课堂上要留给学生充足的思考时间与空间,复习课后要精心设计有针对性的习题作业,精心批改作业,可以对学生进行个性化辅导,以便让学生得到更进一步的巩固和提高。
1.知识方面
十二月,最后的冲刺阶段,我们需要对知识进行宏观、整体上的把握,但是何为宏观上的把握,下面呢,我将通过一个例子来说明我们应该如何对知识有宏观上的把握。首先呢,我想问大家一个问题,考研数学的题型有哪几种?相信很多同学会告诉我,我问的这句话实在是太多余了,因为看过真题的人都知道,考试题型就是选择题、填空题和解答题。其实,大家告诉我的是考研数学的形式,而考研数学是最不注重形式的一门考试,比如说求极限,它可以出现在选择题、填空题中,也可以出现在解答题中,但是无论它以何种形式出现,我们都是一步步的进行求解,因此我们的考研数学是最不注重形式的一门考试。
考研数学考试主要以计算题为主,下面我们再来看下三种题型,分别对我们考生有什么样的要求:
(1)概念:概念题对大家有两个要求,一是概念的再现,比如说导数,说到导数,大家的头脑中就要不假思索的闪现出如下等式:
二是理解概念本身、理解概念的变形,依旧以导数为例,我们还要知道下列形式也是导数的定义;
(2)计算:计算题要求大家的做题速度要够快、准确率要够高,对于这个目标,我们没有什么捷径而言,唯有通过大量的习题训练才能够做得快、做的准;
(3)证明:证明题是一直以来大家认为最难的一个部分,但是对于这最难的部分,我们并不是素手无策的,因为该部分的内容是有迹可循的,通过我们对近三十年考研数学的真题进行分析,我们发现证明题的分值是比较稳定的,题目数在1-2道,并且考查的内容也是可以被追溯的,就拿高等数学来说吧,它出证明题的范围只有两个一是不等式的证明,一是中值定理。
2.模考
(1)形式与内容
在最后的冲刺阶段,我们一定要注意模拟考试的形式是远远大于考试的内容的,大家都知道考研数学是上午的8:30-11:30,因此我们在模拟的时候,大家也要保证我们在这个时间段答题,一定要按照严格的时间来进行模拟考试。另外大家要注意,我们在模拟的时候,大家做题做到11点15分的时候就结束,我们要留出15分钟的机动时间,因为在正式考试的时候可能会出现一些我们当前无法预知的问题,所以在模拟的时候要留出部分时间。
(2)心态
到了这个紧张的关键时刻,大家在做模拟题目的时候可能会遇到一些障碍,这些障碍可能直接影响大家当前的学习心情,削减备战精力,这种做法是非常不正确的,大家都知道真题的价值是远远高于模拟题目的,但是模拟题目的难度是高于真题的,所以大家遇到障碍的时候,无需久久挂心,烦恼的时候,莫不如将时间花费在查缺补漏上,所以大家这个阶段不要有消极的心态,大家一定要保证积极良好的状态,全面备战考试。
(3)题目
这个阶段我们仍然按照11月下旬的做题节奏,保证真题和模拟题的比例是2:1,平均两天一套题,认真的对待模拟考试。
第一,复习概念。
大纲是所有考生都需要彻底理一遍的首要材料。所有的概念都须搞清记熟,查漏补缺。这是9月份之前考生应做的工作。
第二,强调做题质量。
从9月份开始,做题是考生这一段时间必须勤。加练习的重要内容。综合题、模拟题、历年真题都是最后阶段的必练题目。周老师强调,每套题都必须做完后认真分析、总结,做一套分析一套,吃透后再做下一套。反复练习、纠错,才能真正掌握。
第三,主要锻炼自己的计算能力。
周老师说,从往年学生常出现的问题来看,很多人都会将注意力集中在笔记上。从课堂上就不难看出,很多同学非常爱做笔记,却不常做题。实际上笔记对考试的用处十分有限,最主要的还是做题,必须要锻炼自己的计算能力和应用能力。许多考生习惯在最后的时间里集中看笔记,其实际功用非常有限。
第四,同样重视使用计算器。
最后两个月的时间,学生也应该熟悉一下计算器的使用。
一、将三门基础2113课作为一个整体去学,摒弃孤立5261的学习,提倡综合4102的思考
恩格斯曾经说1653过:“数学是研究数和形的科学。”这位先哲对数学的这一概括,从现代数学的发展来看,已经远远不够准确了,但这一概括却点明了数学最本质的研究对象,即为“数”与“形”。比如说,从“数”的研究衍生出数论、代数、函数、方程等数学分支;从“形”的研究衍生出几何、拓扑等数学分支。20世纪以来,这些传统的数学分支相互渗透、相互交叉,形成了现代数学最前沿的研究方向,比如说,代数数论、解析数论、代数几何、微分几何、代数拓扑、微分拓扑等等。可以说,现代数学正朝着各种数学分支相互融合的方向继续蓬勃地发展下去。
数学分析、高等代数、空间解析几何这三门基础课,恰好是数学最重要的三个分支--分析、代数、几何的最重要的基础课程。根据课程的特点,每门课程的学习方法当然各不相同,但是如果不能以一种整体的眼光去学习和思考,即使每门课都得了a,也不见得就学的很好。学院的资深教授曾向我们抱怨:“有的问题只要画个图,想一想就做出来了,怎么现在的学生做题,拿来就只知道死算,连个图也不画一下。”当然,造成这种不足的原因肯定是多方面的。比如说,从教的角度来看,各门课程的教材或授课在某种程度上过于强调自身的特点,很少以整体的眼光去讲授课程或处理问题,课程之间的相互联系也涉及的较少;从学的角度来看,学生们大都处于孤立学习的状态,也就是说,孤立在某门课程中学习这门课程,缺乏对多门课程的整体把握和综合思考。
根据我的经验,将高等代数和空间解析几何作为一个整体去学,效果肯定比单独学好,因为高等代数中最核心的概念是“线性空间”,这是一个几何对象;而且高等代数中的很多内容都是空间解析几何自然的延续和推广。另外,高等代数中还有很多分析方面的技巧,比如说“摄动法”,它是一种分析的方法,可以让我们把问题从一般矩阵化到非异矩阵的情形。因此,要学好高等代数,首先要跳出高等代数,将三门基础课作为一个整体去学,摒弃孤立的学习,提倡综合的思考。
二、正确认识代数学的特点,在抽象和具体之间找到结合点
代数学(包括高等代数和抽象代数)给人的印象就是“抽象”,这与另外两门基础课有很大的不同。以“线性空间”的定义为例,集合v上定义了加法和数乘两种运算,并且这两种运算满足八条性质,那么v就称为线性空间。我想第一次学高等代数的同学都会认为这个定义太抽象了。其实在高等代数中,这样抽象的定义比比皆是。不过这样的抽象是有意义的,因为我们可以验证三维欧氏空间、连续函数全体、多项式全体、矩阵全体都是线性空间,也就是说,线性空间是从许多具体例子中抽象出来的概念,具有绝对的一般性。代数学的研究方法是,从许多具体的例子中抽象出某个概念;然后通过代数的方法对这一概念进行研究,得到一般的结论;最后再将这些结论返回到具体的例子中,得到各种运用。因此,“具体--抽象--具体”,这便是代数学的特点。
在认识了代数学的特点后,就可以有的放矢地学习高等代数了。我们可以通过具体的例子去理解抽象的定义和证明;我们可以将定理的结论运用到具体的例子中,从而加深对定理的理解和掌握;我们还可以通过具体例子的启发,去发现和证明一些新的结果。因此,要学好高等代数,就需要正确认识抽象和具体的辩证关系,在抽象和具体之间找到结合点。
三、高等代数不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁
随着时代的变迁,高等代数的教学内容和方式也在不断的发展。大概在90年代之前,国内高校的高等代数教材大多以“矩阵论”作为中心,比较强调矩阵论的相关技巧;90年代之后,国内高校的高等代数教材渐渐地改变为以“线性空间理论”作为中心,比较强调几何的意义。作为缩影,复旦的高等代数教材也经历了这样一个变化过程,1993年之前采用的屠伯埙老师的教材强调“矩阵论”;1993年之后采用的姚慕生老师的教材强调“线性空间理论”。从单纯重视“代数”到“代数”与“几何”并重,这其实是高等代数教学观念的一种全球性的改变,可能这种改变与现代数学的发展密切相关吧!
学好高等代数的有效方法应该是:
深入理解几何意义、熟练掌握代数方法。
其次,高等代数中很多问题都是几何的问题,我们经常将几何的问题代数化,然后用代数的方法去解决它。当然,对于一些代数的问题,我们有时也将其几何化,然后用几何的方法去解决它。
最后,代数和几何之间存在一座桥梁,这就是代数和几何之间的转换语言。有了这座桥梁,我们就可以在代数和几何之间来去自由、游刃有余。因此,要学好高等代数,不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁。
四、学好教材,用好教参,练好基本功
复旦现行的高等代数教材是姚慕生老师、吴泉水老师编著的《高等代数学(第二版)》。这本教材从1993年开始沿用至今,已有近的历史。教材内容翔实、重点突出、表述清晰、习题丰富,即使与全国各高校的高等代数教材相比,也不失为出类拔萃之作。
复旦现行的高等代数教学参考书是姚慕生老师编著的《高等代数学习方法指导(第二版)》(因为封面为白色,俗称“白皮书”)。这本教参书是数院本科生必备的宝典,基本上人手一册,风行程度可见一斑。
要学好高等代数,学好教材是最低的要求。另外,如何用好教参书,也是一个重要的环节。很多同学购买教参书,主要是因为教材里的部分作业(包括一些很难的证明题)都可以在教参书上找到答案。当然,这一点无可厚非,毕竟这就是教参书的功能嘛!但是,我还是希望一年级的新生能正确地使用教参书,遇到问题首先自己独立思考,实在想不出,再去看懂教参书上的解答,这样才能达到提高能力、锻炼思维的效果。注意:既不独立思考,又不看懂教参书上的解答,只是抄袭,这对自己来说是一种极不负责的行为,希望大家努力避免!
最后,我愿以华罗庚先生的一句诗“勤能补拙是良训,一份辛勤一份才”与大家共勉,祝大家不断进步、学业有成!
一、检查试卷,稳定心情
拿到试卷以后不要着急做题,花一两分钟时间把卷子通篇看一下,检查一下考研数学试卷是不是23道题目,大致都是什么题型的题目。这样做有两个好处:一是可以有效防止因粗心大意而漏掉一些题目,漏题就太可惜了;二是可以加强自己的信心,稳定心情,通过长达一年时间的复习,看了这么多参考书,听了那么多考研课程,相信试卷中肯定有不少题型你是非常熟悉的,看了这些题目以后,你会感到非常高兴,自信心倍增,原本紧张的心情也会放轻松,这样才能正常发挥。
二、按序做题,先易后难
考研数学题量都是23道题目,其中选择题8道,填空题6道,解答题9道。题目类型也是固定的,数学一和数学三1~4题是高数选择题,5~6题是线代选择题,7~8题是概率选择题;9~12题是高数填空题,13题是线代填空题,14题是概率填空题,15~19题是高数解答题,20~21题是线代解答题,22~23题是概率解答题。数学二1~6题是高数选择题,7~8题是线代选择题;9~13是高数填空题,14题是线代填空题,15~21题是高数解答题,22~23题线代解答题。
选择题和填空题主要考察的是基本概念、基本公式、基本定理和基本运算,解答题包括计算题和证明题考察内容比较综合,往往一个题目考查多个知识点,从近些年的试卷特点,题型都比较常见,难度不算大,我们最好按题目顺序做,这样能稳定心情,很快进入状态,也不容易漏做题目,如果遇到自己不熟悉的题目也不要发慌,可以暂时放下接着做下一个题目。等容易的题目有把握的题目都做完之后,再静心研究有疑问的题目,但如果实在没有思路也要学会放弃,留出时间检查自己会做的题目,争取会做的题目不丢分,因为数学的分数最依赖的还是能否将会做的题都做对。
此外,有些同学喜欢先做高数,再做线代,这样的做题顺序也可以,关键是看你平时训练时是如何训练的,选择适合自己的就是最好的,但在此提醒一下大家一定不要漏做题。
三、合理分配答题时间
根据以往考生的经验,一道客观题控制在3分钟左右,最多不要超过5分钟,解答题一般10分钟左右,根据难易程度适当调整。最后至少留出30分钟时间检查,确保会做的题目计算正确。
考研线性代数考点预测:向量的数学定义
首先回顾一下,在中学我们是如何表示向量的。中学数学中主要讨论平面上的向量。平面上的向量是可以平行移动的。两个相互平行且长度相等的向量我们认为是相等的。好,假设在平面直角坐标系中,对于平面上的任何一个向量,我们总是可以将其平移至起点坐标原点重合。这时向量终点的坐标同时也是向量的坐标。这样,我们就可以用一个实数对表示一个平面向量了。
一个实数对实际是我们线性代数中的一个二维行向量。而线代中讨论的向量是任意n维的。所以线性代数中的向量可视为中学向量的推广。
下面是向量的数学定义:
由n个实数a1,a2,…,an构成的有序实数组(a1,a2,…,an)称为一个n维行向量。类似可定义列向量。
问个问题:向量和矩阵是什么关系?向量可视为特殊的矩阵(行数或列数为1的矩阵)。这是理解向量的一个很好的角度。因为学习向量时,我们已把矩阵讨论得很清楚了,所以通过矩阵理解向量就能省不少事。
知道了什么是向量,那什么是向量组呢?向量一般来说不是单独出现,而是成组出现的。我们把多个向量放在一起考虑,就构成了向量组。
当然向量组的严格数学定义也不难理解:由若干个同型向量构成的集合称为一个向量组。这里的“同型”可以理解成矩阵同型,也可以用向量的语言描述成:同为行向量或列向量且维数相同。
数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,cauchy, riemann, weierstrass 等数学家分别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一个重要分支。
复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的!
复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。
由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。
在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。
难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足cauchy-riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习cauchy-goursat 基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和newton-leibniz公式相对应的结论等等。
这些难点和重点教学法方面介绍了类比教学法,化“复”为“实”,用“已知”解决“未知”的思想等教学法。
参加培训之前我没有考虑过这些问题,通过这次学习,我对这些难点与重点的认识进一步深入了。以后的教学过程中用到所学的知识,为提高教学质量而努力。
庆童蒙氏幼儿园是大庆庆童早期教育服务中心的一所幼儿教育实践基地,本中心于20xx年1月份开始进行亿童《蒙氏数学》的课题研究及大庆地区幼儿园教育服务工作,并于20xx年3月成立庆童幼儿园。对于如何在幼儿园中班开展蒙氏数学,使幼儿得到更大的发展成为本园所的研究主要目标。在近几年的实践中,渐渐总结出了一些心得,在这里与各位同仁及家长共同分享。
一、《蒙氏数学》是孩子的好伙伴
我国数学家陈身生说过:传统的数学教育,幼儿学到的只是计算能力的培养。而《蒙氏数学》以激发兴趣和培养思维为精华的数学教育思想和独特的纸面操作教具为主的教学形式弥补了传统数学教育的不足,让幼儿在学习过程中学习推理、判断、主动思考、与人沟通、互相学习、互相帮助、互相欣赏、互相包容。经过一段时间的努力,孩子们在各个方面都有了很大的进步。在线上活动时,一听到班德瑞音乐,孩子们便会安静自觉地进行走线活动;在集体活动时,幼儿通过教具的操作,不但在大小肌肉、手眼协调方面得到训练,而且领会了感官、数学教育中的内涵,为学习文化知识打下坚实基础并养成良好的学习习惯;同时在自主操作中,他们的动手操作能力有了很大的进步,增进了同伴之间的友谊和情感,他们的语言表达能力、动手能力、交往能力也有了很大的提高,孩子们参与的主动性与积极性也越来越强,真是印证了那句话“智慧就在指尖上”。在不断的研究、反思,分析个案,调整教学内容、方法的过程中,我体味着变化的欣喜和收获的充实。
二、《蒙氏数学》是教师的好帮手
开课初期,我园针对各班的实际情况,无论是在《蒙氏数学》的线上活动,还是在集体活动、到分组活动上,操作起来较难。孩子们在分组活动时,我在组织教学活动的初期,一到这个环节就头痛,到现在可以很轻松地驾驭这个环节,使我感觉到《蒙氏数学》不仅使孩子的各方面能力有所提高,也使我们在教学活动中的组织能力有所提高。经过半学期的时间,我发现孩子们虽然已经知道了蒙氏常规的要求是什么,而且在专注力等方面都较以前有了进步,但对于《蒙氏数学》中不同教具操作要求及其展示方式等,真正能按要求去做的还是不多。另外,在其他方面的学习上也出现了明显的差距。这些情况的出现让我不得不重新思考和修改自己的教学方法。
为了充分发挥“以强带弱,以弱促强”的这一教育理念,我把教学的目标重新进行了调整。我班接受能力强的幼儿占多数,因此,我以这部分幼儿为主,然后再根据其余幼儿不同的发展需求制定相应的教学目标。
在《蒙氏数学》活动中增加接受能力强的幼儿进行展示的机会。这样不仅会增强孩子的自信心和学习积极性,同时还会激励弱势幼儿的学习,于是就达到了互相学习、互相促进的目的。
在其他内容的学习上,除了进行分组教学以外,我还运用《蒙氏数学》的作业纸,增强了家园共育这一环节,请家长们参与到孩子们的学习中来,进行家庭辅导。对于孩子们遇到的困难,由家长反馈给我,我再根据孩子们作业情况及家长的意见进行课堂指导或个别指导,然后再利用作业进行巩固和练习。
总之学习了《蒙氏数学》后,孩子们的数学思维能力有所提升,养成了主动思考的习惯,专注力和秩序感越来越好,自我探究意识也增强了,现在孩子们在做《操作册》时,多数题不用老师讲解,就能独立审题并完成。
三、《蒙氏数学》促进了整合教育的发展
作为《蒙氏数学》的老师,为了孩子能够更好地健康发展,我考虑如何把《蒙氏数学》与日常教育更好地进行结合,使孩子们得到更大的发展。对于这一点,从一开始我们班便开始了相应的实践。
1.利用《蒙氏数学》中的日常生活教育进行生活常规教育。
我利用《蒙氏数学》的活动,让幼儿学习如何搬椅子、拿勺子、擦桌子、叠衣服、站队等,在日复一日的生活中,不断重复这些工作,幼儿的生活常规有了很大的提高。运用蒙台梭利教育理念管理教育环境,引导幼儿参与环境管理的过程中,只要我们注意“环境育人”这一教育功能,孩子们就会更好的成长。
2.把蒙氏活动中的一些技能学习与五大领域活动进行穿插教育。
3月初时,我准备带孩子们上一堂剪纸课《美丽的小雪花》之前,我就利用做蒙氏数学《操作册》的时间不断让幼儿进行“剪”的活动,以提高幼儿“剪”的技能。孩子们在学习蒙氏数学的过程中,不知不觉地接触到了方方面面的指示,使自己得到了不同程度的满足和提高。
3.五大领域教学可弥补《蒙氏数学》教学中音乐、绘画方面的不足。
通过五大领域与《蒙氏数学》教学相结合,孩子们学到的内容大大增加,知识涉及更为广泛。《蒙氏数学》为幼儿准备了充分的学具和操作材料,他们每天都能根据自己的兴趣和需要在这里自由选择、自由操作,教师在观察的基础上给予适时地引导和帮助,让孩子在操作活动中自我学习、自我探索、自我发现、自我提高,从而实现主动发展的目标。
四、《蒙氏数学》促进了家长工作
通过做蒙氏数学《操作册》、《作业纸》,每个孩子的进步不仅老师看在眼里,家长们也十分清楚,对于自己的孩子哪些方面进步了,哪些方面还有所不足,家长会经常与我沟通。这样一来,不但家长工作收到了成效,我们的数学教育教学质量也有了提高,当然还是孩子们得到了健康的充分的发展。在前些天家长的反馈表中,有的家长写道:《蒙氏数学》寓教于乐,激发了孩子的学习兴趣,让他在快乐中学习,在快乐中学习成长,这是我们家长最愿意看到的;还有的家长写道:自从接触了《蒙氏数学》,孩子的思维能力增强了,对数学也很感兴趣,尤其喜欢通过做手工、做剪纸学习数学知识,这样形象生动的学习方式,孩子很乐于接受,家长也很高兴,在此对《蒙氏数学》表示感谢。这些都是家长们发自肺腑的感言。
《蒙氏数学》通过简单的作业纸,就轻而易举地拉近了教师与家长之间的距离,也增进了亲子间的关系,使我今后的工作能更顺利地开展。
虽然不是数学系学生(化学系学生),但是觉得也勉强可以回答一下。
数学分析我也坐等大佬填坑,我数学分析学的并不好;高等代数倒是可以说说一点一孔之见,有点长,欢迎友好交流。
高等代数是研究线性关系的代数学,是当代代数学的基础。那么既然提到线性关系,那么最容易想到的一定是一次齐次多项式(不论是一元多项式,如#formatimgid_0#,或者多元多项式#formatimgid_1#),你可以想一下,在同一平面内的两条直线,有哪几种关系?
这个我想大家都想的明白:相交、平行或者重合。相互“平行”的几个一次齐次多项式组成的方程(条件独立)不就是线性方程组吗?相互“相交”的不就是多项式环(几个多项式依赖于乘法结合)?相互“重合”的不就是重因式吗?(重合可以看做相交的特殊情况,就是有解的情况下有无穷解,所以划到多项式环一点问题没有)
所以,国内较为常见的打开思路是要么先讲一元多项式环(或者多项式环),以张贤科先生《高等代数学》和孟道骥先生《高等代数与解析几何》的书为例;要么先讲线性方程组,以丘维声先生《高等代数》为例。姚慕生老师的书《高等代数学》开篇就是行列式,按照个人观点来看其实有问题的。从行列式的三种定义(从线性变换对应矩阵表示的角度来讲,明显不合适,观点太超前了;从映射的角度来讲,对初学者太抽象;从逆序数组合乘积再求和来讲,没有直观意义,只是沦为计算工具)来看,其十分不适合放在开篇第一章的位置。相应的,我是非常不待见考研数学线性代数经典书籍同济版本的线性代数的,这书我相信开篇行列式的打开方式令无数考研同学对于代数从此一叶障目,不见泰山。
个人比较推崇丘维声老师的思路。原因有以下几点:
第一,不仅结构相对清晰,而且思路叙述相对完备。举个例子,从线性方程组的完全求解(即完全解决线性方程组的求解方法――gauss-jordan算法和解的结构)开始,第一章叙述求解方法,(第二章叙述行列式,我觉得这是一个败笔。我本人也曾用他的教材授过一次课,跳过完全没问题,一个跳过去完全不影响以后发展的章节说明其在结构上是赘余的,所以说是败笔)第三章通过n维向量空间作为脚手架来解决解的结构问题,接着引出矩阵(系数矩阵)的表示方法,引出矩阵解法。这一系列线性代数的基本概念都在解决线性方程组求解的问题中产生,并发挥作用,证明也很大程度上依赖线性方程组的基本理论,可以说结构相对清晰,中间为什么引入向量叙述也算是比较充分(但是个人在授课时依然倾向于让学生在观察求解线性方程组时系数的变化情况而引入,而不是先引入再告诉你联系,觉得这样更有逻辑些,但是毕竟有所提及,解释问题)。
我同意这样的看法:代数学是“生产定理的机器”,是研究结构的学科。有一个清晰的结构很重要,但叙述思想与概念的来源同样非常重要,因为这样的想法可以指导以后的认知,这是真正的授之以渔。
第二,定理内容深刻,进行了很大推广,在推广过程中让读者意识到每个条件的意义。第五章是特征值与特征向量,第六章是二次型(后二章里面用了大量一元多项式环的内容,虽然结论深刻了,但是要求提高了)(至此线性代数部分结束,转入高等代数部分),仅靠上半本和下半本的第七章就可以对于矩阵的特征值和特征向量有相对充分的认识了(当然,有些问题还是没能够解决,比如怎样的多项式的特征值重数不变)。之后的第十章讨论了具有度量的线性空间,并不限于实数域与复数域,还推广到了一般域(通常这个域的特征不为2)的情况,叙述正交空间与辛空间,这其实对于矢量与场论分析基础有帮助(比如,正交变换作用于一个标准正交基#formatimgid_2#可得到另一个标准正交基#formatimgid_3#等价于两个标准正交基做的非退化线性变换必为正交变换,这在有限维实内积空间或酉空间不可以如此论述,因为这两个基不是数域上的向量,是一般域上的),这个是很好的,也帮助读者更好认识从实数域、经过复数域再到一般数域,因为正定性这一关键(不然就没有办法定义内积)而不断放低条件的过程。
第三,例题丰富,便于自学,并至少试图进行广泛应用。表明所学的意义和用法,这一点也非常重要。我们当下很多的学生只是单纯的学习数学知识,但是对于学科的基本思想与方法全然无睹,导致的严重后果是当需要用到这些知识的时候学生们要么根本不记得多少,要么根本想不起来用。个人认为大学最重要的是培养的是人的思维方式,而不是知识(当然不是不重要,只是有了这些才有真正意义上的知识)。让读者能够学以致用,这一点上,在国内的基础教材内,丘维声老师的书确实做的非常好。
以上既是丘老师书的优点,也是在阅读的时候需要注意的:注意叙述的时候课程或者教材结构的合理性;注重每个定理的意义和条件的意义;进行应用和推广时应注意什么。
这个其实也是是学习数学的一般思维。当然针对于代数,我也有其他的一些想法与认识,(敲黑板),以下是学习代数时应该注意的想法和方式:
第一,注意有限与无限的区别。无限和有限的意义往往不一样,这个在有限维里成立的命题,未必可以推广到无限维。比如伴随变换在有限维酉空间里一定有,但是在无限维酉空间里就不一定有了。但是线性空间的补空间在有限维和无限维空间里都是有的。
第二,要有“基”和维数的意识,这是(有限维的)线性代数独有的。研究一个有限维的线性空间只需要找到一个基,研究一个有限维线性空间上的线性变换除了找对应关系,还是要找一个基(线性映射找两个)。有了基才有坐标的意义,度量才有了意义。与基相关联的还有维数,这同样是描述线性空间的核心数学量(比如,两个有限维实内积空间同构当且仅当二者同维)。我所指的基,可不仅仅指线性空间中的基,还有多项式环中的不可约多项式(这往往倒是无限多的),不可约多项式和线性空间的基看似是不同的概念,却都是构筑相应结构(基域上多项式环和基域上有限维线性空间)的“砖石”。这个观点非常重要,以后讲述抽象代数,这个“砖石”有名字的,叫做“生成元”,甚至于学习群表示论,我们更关心群的不可约表示,就是因为这个。
第三,以研究态射为高等代数的核心。当然这也是后续课程抽象代数学的核心。高等代数的重难点就是线性空间与线性映射,搞不清楚这一点就没办法弄清楚结构问题,或者“作用效果”。解决问题一定要抓住要解决所需的必要条件,比如做一个矩阵分解,我得知道矩阵分解能够体现什么特征。比如,我做一个极分解,结果相当于做第一类正交变换和仿射变换这说明我作用这个矩阵可以得到这样的效果(类比于经典力学中曲线运动,我将力分解为切向力和法向力,每个分力都要承担效果的)。
第四,学习抓临界条件来解决关键问题,不要随意丢弃“脚手架”。秩的概念的本质就是向量集合的最小的生成元集中元素的个数,最小多项式更是如此(次数最低的零化多项式)。最小本质就是一种临界条件(有点类似于物理中的临界问题,或者边界条件?),临界状态往往是突破口;还有一些用过的工具用过了不代表没用,比如向量组提出其实可以看做是用来解决线性方程组问题的,但是解决了不代表就没其他用了,相应的,在度量上,其依然发挥着重要作用。
这就是个人的一点观点,不局限于高等代数(也一定不能局限,否则难以提出真正的高观点),再次表示欢迎真正的大佬前来指教,姑且作为抛砖引玉了。
最新我国数学双基教学的利与弊15篇(通用)
文件夹