2025年多边形的内角和试讲教案 11.3.2多边形内角和教学设计(五篇)
文件格式:DOCX
时间:2023-03-30 00:00:00    小编:阿楠木木qaq1

2025年多边形的内角和试讲教案 11.3.2多边形内角和教学设计(五篇)

小编:阿楠木木qaq1

作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。大家想知道怎么样才能写一篇比较优质的教案吗?这里我给大家分享一些最新的教案范文,方便大家学习。

多边形的内角和试讲教案多边形内角和教学设计篇一

1、教材的地位和作用

本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

2、教学重点和难点

重点:多边形的内角和与外角和

1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。

2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

1、教学方法的设计

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

1、注意评价内容的多元化

通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。

2、注重对学生学习过程的评价

在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。

1、指导思想

根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。

2、关于教材处理

本教案设计时,我对教材作了如下改变:①将教材例1作为练习中的“想一想”,由学生自已尝试解答;②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。

③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。

以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!

多边形的内角和试讲教案多边形内角和教学设计篇二

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

3.会根据比较简单的条件画出指定的四边形.

(三)德育渗透点

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

类比、观察、引导、讲解

2课时

投影仪、胶片、四边形模型、常用画图工具

第2课时

【复习提问】

1.什么叫四边形?四边形的内角和定理是什么?

2.如图4-9, 求 的度数(打出投影).

【引入新课】

【讲解新课】

1.四边形的外角

2.外角和定理

求 .

(2)教给学生一组外角的画法——同向法.

(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.

证得:

360°

外角和定理:四边形的外角和等于360°

3.四边形的不稳定性

(学生回答)

②若以 为边作四边形abcd.

提示画法:①画任意小于平角的 .

②在 的两边上截取 .

④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.

教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:

【总结、扩展】

1.小结:

(1)四边形外角概念、外角和定理.

(2)四边形不稳定性的应用和克服不稳定性的理论根据.

教材p128中4.

教材p124中1、2

多边形的内角和试讲教案多边形内角和教学设计篇三

使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算。

重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角。

一、复习提问

1.三角形的内角和与外角和各是多少?

2.三角形的外角有哪些性质?

二、新授

例1.在△abc中,∠a=12∠b=13∠c,求△abc各内角的度数。

分析:由已知条件可得∠b=2∠a,∠c=3∠a所以可以根据三角形的内角和等于180°来解决。

a

bdea

(1)你会求∠dae的度数吗?与你的同伴交流。

(2)你能发现∠dae与∠b、∠c之间的关系吗?

(2)若只知道∠b-∠c=20°,你能求出∠dae的度数吗?

分析:(1)∠dae是哪个三角形的内角或外角?

(2)在△ade中,已知什么?要求∠dae,必需先求什么?

(3)∠aed是哪个三角形的外角?

(4)在△aec中已知什么?要求∠aeb,只需求什么?

(5)怎样求∠eac的度数?

三、巩固练习

1.如图,△abc中,∠bac=50°,∠b=60°,ad是△abc的角平分线,求∠adc,∠adb的度数。

2.已知在△abc中,∠a=2∠b-10°,∠b=∠c+20°。求三角形的各内角的度数。

四、小结

三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便。

多边形的内角和试讲教案多边形内角和教学设计篇四

1.会用多边形公式进行计算。

2.理解多边形外角和公式。

经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.

让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

(一)探索多边形的内角和

活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

内角和计算规律

三角形31180°(3-2)·180°

四边形4

五边形5

六边形6

七边形7

。。。。。。

n边形n

活动3:把一个五边形分成几个三角形,还有其他的分法吗?

一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)

例1:已知四边形abcd,∠a+∠c=180°,求∠b+∠d=?

(点评:四边形的一组对角互补,另一组对角也互补。)

分析:(1)任何一个外角同于他相邻的内角有什系?

(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?

(3)上述总和与五边形的内角和、外角和有什么关系?

解:五边形的外角和=______________-五边形的内角和

也可以理解为:从多边形的一个顶点a点出发,沿多边形的各边走过各点之后回到点a.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。

结论:多边形的外角和=___________。

练习1:如果一个多边形的.每一个外角等于30°,则这个多边形的边数是_____。

练习2:正五边形的每一个外角等于________,每一个内角等于_______。

练习3.已知一个多边形,它的内角和等于外角和,它是几边形?

(三)小结:本节课你有哪些收获?

(四)作业:

课本p84:习题7.3的2、6题

附知识拓展—平面镶嵌

(五)随堂练习(练一练)

1、n边形的内角和等于__________,九边形的内角和等于___________。

2、一个多边形当边数增加1时,它的内角和增加()。

3、已知多边形的每个内角都等于150°,求这个多边形的边数?

4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()

a:360°b:540°c:720°d:900°

多边形的内角和试讲教案多边形内角和教学设计篇五

1、教学目标定位

(1).知识技能目标

让学生掌握多边形的内角和的公式并熟练应用。

(2).过程和方法目标

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

2、教学重、难点定位

1、教材的地位与作用

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的.认知特点。

2、联系及应用

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

1、教学方法的设计

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制