最新元次不等式教后反思
文件夹
科技创新是推动社会进步的重要力量,我们应该加大科技投入。在写总结时,我们要注意客观真实地反映事实,避免主观色彩的夸大和减弱。在这里,小编为大家分享了一些总结的佳作,希望能给大家带来一些启发。
本节课通过多媒体呈现习题,节省了大量的时间,充分利用了宝贵的课堂45分钟。通过学生自我训练、小组互帮和教师释疑,成功地解决了在新授过程中存在的部分遗留问题,达到了巩固一元一次不等式和一元一次不等式组的相关知识,尽管培养学生乐于探索的学习品质不是一朝一夕的事,但本节课在这方面也发挥了积极的作用;对知识的综合、迁移和应用等能力也起到了潜移默化的功效。但在教学过程中我觉得还有如下遗憾:
在课件中尽管有一个知识网络图,但学生在学习过程中对本章知识并没有能够形成知识体系,没有能够构建完整的知识网络图。主要原因应该是:
1.知识网络图不是由学生自我总结得出的。
2.没有和学生共同分析知识结构图中各部分内容之间的关联。
3.网络图中做了链接,学生点击后进入链接内容,知识网络很快消失。
在今后的教学中,一定要让学生自我总结,自我设计知识结构图,教师引导规范由学生板书在黑板上,使之和课件中的结构基本一致,然后呈现课件中的知识结构图,再由学生点击进入下一阶段。
1、本节课是学生在学习了解一元一次不等式的基础上,进一步学习解一元一次不等式组。解一元一次不等式组的方法我们可以通过数轴法来求得各不等式的解的公共部分。教师引导学生通过观察、归纳出在取各不等式的解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备。本节内容由2个课时完成,第一课时学习一元一次不等式组的概念和数轴法解一元一次不等式组。第二课时进一步归纳解一元一次不等式组的方法:口诀法。
2、成功之处:
(1)本节课在学习一元一次不等式组和解集的概念时运用了类比的思想,和二元一次方程组进行了类比,让学生体会到知识之间的联系和区别。
(2)课堂评价中能体现分层评价,对c层学生以鼓励为主,树立其自信心。对b层学生激励加挑战,使其向更高层次迈进。让a层学生发挥总结归纳的作用,代替教师进行总结。
3、不足之处:
(1)在总结口诀法的时候,只是让个别同学做了总结,然后我让大家背诵口诀,以便以后的应用,而从后面的做题中看出部分学生仍然只是死记硬背,没有理解口诀的意思,从而不能灵活运用。
(2)在知识梳理环节有同学提出疑问:若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。
(3)由于课堂容量较大,让学生板演的机会较少,对于解一元一次不等式组的解题格式不够规范,甚至部分学生只解了两个不等式,画了数轴,并没有找出解集的公共部分,没有最红写出不等式组的解集。
一元一次不等式(组)的主要内容是一元一次不等式解法及其简单应用。这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。本单元的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如天气预报、猜猜我几岁等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。
而不等式的基本性质和解一元一次不等式,是一些基本的运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于函数、方程、不等式度是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过旅游优惠、购物优惠等具体例子渗透这三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。
在课前,我做了很多的准备,对我所教的学生会出现什么样的情况,我都做到了心中有数。满以为自己可以打一个漂亮的战役。
经过分析我终于找到了答案,急于求成。在上课时只想到要展示三项技能可忘记了学生的渐进舒展的规律。还没等学生得以舒展时,就进入下一个环节。导致学生没能舒展开。同时复习课上的练习应在于精而不在于多,由于讲求多练,导致学生没有真正把知识练透,削弱了复习的效果。
通过这节课,让我在教学的道路上又成长了许多。使我明白了怎么更能上好一节数学课。
不等式是刻画现实世界中量与量之间不等关系的有效数学模型,一元一次不等式是表示不等关系的最基本的工具,是学生学习其他相关数学知识的基础。
现行“苏科版”教材从身边的实际问题中建立不等式,从这些具体问题中的数量大小关系使学生了解不等式的意义,理解不等式相关概念,并探索了不等式的基本性质。
不等式的基本性质的教学,是分成两个阶段进行的。对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。
不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。
解一元一次不等式的基础是一元一次方程的解法,两者基本类似,唯一不同的是不等式的两边同时乘以或除以一个负数时,不等号方向需要改变。在进行类比解一元一次方程与解一元一次不等式时既要说明它们的相同点,更要使学生明确它们的不同点,揭示各自的特殊性,从类比中进一步领会不等式的有关知识的特点和本质。
在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。
解一元一次不等式的方法与解一元一次方程的方法类似,教学时应注重学生一有的经验,鼓励学生探索。归纳解一元一次不等式的方法和步骤,对教材中所设计的供学生讨论和交流的问题。要注意让不同水平的学生能发表意见,并给予肯定和补充。同时适当渗透类比的方法和转化数学思想。
教材中举例说明一元一次不等式的解法,没有给出解法的一般步骤,教学中要注意让学生经历将所给不等式转化为简单的不等式的过程。从中自然引申出不等式中去分母、去括号、移项、系数化为1等步骤及其注意事项,体会数学学习中比较和转化的作用。
继续重视学生在不等是解集在数轴上的表示,以巩固对不等式解集的认识,也为下一节一元一次不等式组的学习作准备。
一元一次不等式(组)的主要内容是一元一次不等式解法及其简单应用。这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。
本单元的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如天气预报、猜猜我几岁等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。而不等式的基本性质和解一元一次不等式,是一些基本的`运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于函数、方程、不等式度是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过旅游优惠、购物优惠等具体例子渗透这三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。
经过分析我终于找到了答案,急于求成。在上课时只想到要展示三项技能可忘记了学生的渐进舒展的规律。还没等学生得以舒展时,就进入下一个环节。导致学生没能舒展开。同时复习课上的练习应在于精而不在于多,由于讲求多练,导致学生没有真正把知识练透,削弱了复习的效果。
本节内容是第八章的难点也是重点,在章节中有承上启下的作用,是一元一次不等式的简单变形的应用,是一元一次不等式组的基础。因而这节内容我更加费劲心思的思考该如何教学,才能让学生更好地掌握知识,运用知识。
本节课教学设计上较合理,知识点循序渐进,符合初中生的学习心理特点。本节课先让学生明白一元一次不等式的变形,再回顾一元一次方程的解的步骤,进一步理解和掌握一元一次不等式的解的步骤。在理解的基础上,通过例题加深,让学生经历了回顾、动手操作、提出问题、判断、找方法、合作交流等过程。另一方面,能够体现出用新教材的思想,体现了学生的主体地位,体现了新的教学理念。
在学习本节时,要与一元一次方程结合起来,用比较、类比的转化的数学思想方法来学习,弄清其区别与联系。
(1)从概念上来说:两者化简后,都含有一个未知数,未知数的次数是1,系数不等于零;但一元一次不等式表示的是不等关系,一元一次方程表示的是相等关系。
(2)从解法上来看:两者经过变形,都把左边变成含未知数(如x)的一次单项式,右边变成已知数,解法的五个步骤也完全相同;但不等式两边都乘(或除)以同一个负数时,不等号要变号,而方程两边都乘(或除)以同一个负数时,等号不变。
(3)从解的情况来看:
1、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性.在数轴上表示不等式的解集是数形结合的具体体现。
2、熟练掌握不等式的基本性质,特别是性质3。不等式的性质是正确解不等式的基础。
错误分析引入有效的提问,可以加深对本课知识的理解,又能更好地巩固前面的内容,起到承上启下的作用。提问过程中可以达到师生间的相互交流。教学提问中,比如:解一元一次方程的步骤是什么?学生在理解解一元一次方程步骤的基础上,类比解一元一次不等式的步骤就有了进一步的认识。同时,提出对“等号”与“不等号”的不同,不等式的解与方程的解又有点差别,特别是对不等式的性质3的不同,加深了学生对不等式的解的理解。由于学生的基础比较差,课堂教学提问中,由易到难,深入浅出,尽可能让学生学会、会学、会做。
本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,让学生理解一元一次不等式的概念及不等式的解法步骤。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来。
本节课较好的方面:
1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;
2、课程内容前后呼应,前面练习能够为后面的例题作准备。
3、设计学案对学生学习的知识进行检查。
不足方面:
引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成。
我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。
有的学生用的是穷举法,换句话说,就是一个一个试。1只、2只、3只。试到5只时,满足条件了,学生说了:“老师,我算出来了,是5只!”有的还接着试,能试出6只也可以,而试到7只时就不满足条件了。所以,答案应该是两个:5只猴子,23颗花生;6只猴子,26颗花生。对于这种方法,我给予了充分的肯定,这是一种很好的方法,而且是学生容易理解、最易接受的一种方法,也说明了学生开动脑筋、认真思考了!当然,也说明学生对方程思想应用还是比较熟练的,但对于不等式思想解题还不习惯,所以我们有必要花大力气在学生已经理解的基础上进一步加大不等式解题的渗透,帮助学生从不等量关系入手,用不等式知识解题。
数量关系中的不等和相等是事物运动和平衡的反映,虽然量的不等是普遍的,绝对的,而量的相等是局部的、相对的。但初中教材对方程安排多些,在一定程度上误导学生应用方程思想解题,而不习惯从不等关系方面考虑问题,所以在学习这一章时,有必要加深学生对知识的理解以及对不等式解题的应用。
5、在知识梳理环节有同学提出疑问:若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。
这节课我的设想是:在学习不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,学会用数轴直观的表示不等式的解集,注意其中的区别与联系,下面我对本节课的讲课作如下分析。
一、由于录课在外校,自己对学生不了解,课上的不是很好,匆忙的复习不等式的性质后就让学生进入下一个环节,以至于先学环节不连贯,大约有2分钟后还是能充分调动学生的积极性,并注重了学生回答:在两边同时乘以或者除以负数时,不等号改变方向,这个环节能想方设法鼓励孩子,这时课堂气氛也开始活跃起来。
二、在学习新知的教学中,我采用了先学后教,当堂训练的教学模式。我先引导学生通过看教材思考,运用举例子等学习活动,将主动权交给学生,这样不仅培养了学生小组合作学习的能力,同时也提高了其参与尝试的兴趣。其次,我在后教环节,除让三个孩子上黑板练习外,其余学生分组练习,同时,我在课堂巡堂时,检查每个学生的练习,发挥学生的力量,开展“生帮生”的活动,放手给孩子改正的权利,发现问题及时纠正。
三、我采用引导发现法培养学生类比推理能力,通过类比一元一次方程的解法归纳一元一次不等式的解法,并在小结环节充分发挥学生的主体作用,让学生自己发表见解,使学生在轻松愉快的气氛中掌握知识。
总之,这节课有收获也有遗憾,学生的积极性和主动性有了提高,不足的是先学环节耽搁了时间,因此在今后的教学中,一方面加强训练,锻炼学生的解题能力,同时通过“纠错”的练习和学生的相互学习逐步提高解题的正确性。
本节课教学设计上较合理,知识点循序渐进,符合初中生的学习心理特点。本节课先让学生明白一元一次不等式的变形,再回顾一元一次方程的解的步骤,进一步理解和掌握一元一次不等式的解的步骤。在理解的基础上,通过例题加深,让学生经历了回顾、动手操作、提出问题、判断、找方法、合作交流等过程。另一方面,能够体现出用新教材的思想,体现了学生的主体地位,体现了新的教学理念。
在学习本节时,要与一元一次方程结合起来,用比较、类比的转化的数学思想方法来学习,弄清其区别与联系。
(1)从概念上来说:两者化简后,都含有一个未知数,未知数的次数是1,系数不等于零;但一元一次不等式表示的是不等关系,一元一次方程表示的是相等关系。
(2)从解法上来看:两者经过变形,都把左边变成含未知数(如x)的一次单项式,右边变成已知数,解法的五个步骤也完全相同;但不等式两边都乘(或除)以同一个负数时,不等号要变号,而方程两边都乘(或除)以同一个负数时,等号不变。
(3)从解的情况来看:
1、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性.在数轴上表示不等式的解集是数形结合的具体体现。
2、熟练掌握不等式的基本性质,特别是性质3。不等式的性质是正确解不等式的基础。
一元一次方程、一元一次不等式和二元一次方程组在初一的时候就已经学过了,而《用函数观点看方程(组)与不等式》这节就要求学生利于函数的观点重新认识、分析。
在复习导入过程中,我给出一个一元一次不等式的的题目:3x—2x+2。同学们都笑开了花,有同学说:“这么容易,老师,我们已经不是初一的小孩子了。”也有同学直接说出这个不等式的解。这时,我提出了问题:“谁能把刚刚学习的一次函数和这个不等式联系到一起?同学们可以大胆想象。”由于学过利用函数观点看方程,有很多同学反映比较快,说:“画两个一次函数y=3x—2和y=x+2的图像,然后再观察”。我按照他的思路讲解了这种方法,同时提出还有没有更简单的方法,引导同学通过一个函数图像来解决问题。
这节课要结束了,突然有个同学问:“老师,本来我们能用初一的知识解题的,为什么要弄的这么麻烦啊?”“问的好,这节课的目的就是培养同学们数形结合思想,为今后的学习打好基础”。
最新一元一次不等式教后反思(优秀12篇)
文件夹