幂函数教学反思简短
文件夹
总结是在不断学习和成长的过程中必不可少的一环。在写总结时,我们应该关注事实和数据,尽量客观地进行分析和评价,避免主观臆断。以下是一些经典案例,供大家思考和参考。
函数的奇偶性是函数的主要性质之一,由于函数的研究对于高一的学生来说与集合、不等式等章节的研究风格完全不同,特别是概念的学习,学生在理解、接受上会有不适应与困惑。对于上述问题,我让学生通过图片和函数图象直观获得对称性的认识,然后利用表格探究数量变化特征,通过代数运算,来验证发现的数量特征,最后在这个基础上建立奇偶函数的概念,取得了较好的教学效果。
本节课在课前准备时我刻意注意了以下几点:
在课堂教学中,合理引入抽象的概念,激发学生学习的兴趣,帮助学生理解教材内容、加深印象从而提高教学质量。在本次教学中,通过图片,直观自然地引出了函数图像的对称性,从而将本次教学中的难点(奇偶函数的图像特征)引入了课堂。这样的概念引入会使学生对奇偶函数的性质产生兴趣,能迅速地把学生的注意力吸引到教学活动中;同时,及时将活动抽象到数学层面上,避免陷入形式化的泥潭。
在教学过程中,让学生自已归纳、总结奇偶函数的图像特性,最后得出函数图像对称性质。我采用的方式是:先给出几个特殊函数的图像,如f(x)=x2和f(x)=1/x,让学生通过图像直观获得函数图像对称性的认识,然后利用表格探究数量变化特征,并通过代数验证数量特征对定义域中的任意自变量都成立,最后在这个基础上建立奇偶函数的概念。这一过程正体现了抽象概念的学习要从具体例证开始,抽象概念需要具体例证的支持的教学理念。这一过程也切实改进学生的学习方式,引导学生经历观察、实验、猜想、推理、交流、反思最后掌握知识过程。在此期间活动的主体是学生,老师是组织者、参与者、引导者,活动中,更多的是突出学生的主体作用,让学生自己经历问题的分析解决过程。
现代信息技术的`广泛应用对数学课程内容的设置、数学教学方式等方面产生深刻的影响。因此,在课堂上根据教学内容选择恰当的信息技术工具,来呈现以往教学中难以呈现的课程内容。本节课我充分利用ppt课件的作图规范、直观、便于找到自变量互为相反数时函数值的等量关系这一特点,由具体到抽象,得出函数奇偶性的一般性的结论。教学课件的运用,活跃了课堂氛围,增加了学生的学习兴趣,使得教学的知识变得更为生动与直观。
在本节课的教学中我还要注意到以下几个方面的问题:
在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,可以多采用学生板演让全班学生纠正等方式,更好的考察学生掌握情况,帮助一些学习有困难的学生改正常见的错误。
在数学教学中我们都要对例题的解题过程进行讲解,并书写解题过程,以便让学生更好的模仿。在本节课例题的解题过程要认真板书,并保证字迹清楚,便于学生仿照。
在授课过程中要注意到说话语速、语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。
一节课结束后,我们都应该静下心来细细想想:这节课总体设计是否恰当,教学环节是否合理,将这些作一总结,经过长期的积累,我们必将获得一笔宝贵的教学财富。
函数是高中数学中一个非常重要的内容之一,它贯穿整个高中阶段的数学学习,乃到一生的.数学学习过程。
其重要性主要体现在:。
1、函数本身源于在现实生活,例如自然科学乃至于社会科学中,具有广泛的应用。
2、函数本身是数学的重要内容,是沟通代数、几何、三角等内容的桥梁。亦是今后进一步学习高等数学的基础和方法。
3、函数部分内容蕴涵大量的重要数学方法,如函数的思索,方程的思想,分类讨论的思想,数形结合的思想,化归的思想,换元法,侍定系数法、配方法等。这些思想方法是进一步学习数学和解决数学问题的基础,是我们教学过程中应注意重点讲解学生重点掌握的部分。
初中阶段所学的函数包括一次函数,反比例函数,二次函数。他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解。
在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好。根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌。我在教学中重点是引导学生怎样去观察图象,从图象得出其性质。如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好。反比例函数,二次函数性质也掌握的较快。
总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识。
初中阶段所学的函数包括一次函数,反比例函数,二次函数。他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解。
在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好。根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌。我在教学中重点是引导学生怎样去观察图象,从图象得出其性质。如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好。反比例函数,二次函数性质也掌握的较快。
总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识。
幂函数作为一类重要的函数模型,是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成。因此,在本节课开头,我先引入几个实例,通过几个具体的幂函数,归纳出这类函数的共同特征,引出幂函数的概念,之后,为了强化概念,做了几个有针对性的练习。
在引入图像和性质时,尝试放手让学生自己进行合作探究学习,让学生认识到幂函数同样也是一种重要的`函数模型,通过研究y=x,y=x2,y=x3,y=x-1,y=x1/2等函数的图象和性质,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数a0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数a0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为淅近线,在方法上,我指导学生注意从特殊到一般进行类比研究幂函数的性质,并强调与指数函数进行对比。
华附的高一学生起点高,数学思维好,这节课内容对他们来讲是比较容易接受的。从图象归纳性质,或引导学生应用画函数的性质画图象等方面,学生都能达到预期目标。通过几何画板软件动态演示幂函数的图象(在第一象限)随幂指数连续变化情况,让学生归纳幂函数性质随幂指数改变的变化情况(其他象限内的情况,可结合奇偶性得到),最后再通过改变画板中的幂函数的幂指数(用参数的方法),让学生预测将要出现什么样的图象,让学生检测自己探索成果的有效性,体验成功,享受学习的乐趣。
在教学过程中,我类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质、同学们课堂上能积极主动参与获得性质的过程,并学会处理未知问题的方法。
首先我由生活中的五个实例引入,概念过渡自然,学生易于接受。我引导学生从实例出发类比指数函数的定义自己观察、归纳、总结概括出幂函数的定义。在概念理解上,用步步设问、课堂讨论、练习来加深理解。在这个环节上,部分学生出现了两个问题:一是把幂函数和指数函数混为一谈了;二是对y=2x2及y=x3+2学生误认为幂函数了。针对这两个问题,我对学生强调了幂函数和指数函数的区别,并从另外一个角度(练习二)让学生去认识幂函数。然后,让学生亲自动手画两个图象,提高学生的动手实践能力,数形结合能力。我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出幂函数的性质,大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的`发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生积极参与教学,在对幂函数图像的画法上,我分析学生所画的图像,肯定他们的优点,指出不足。并借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。
在本节课的实践中,既出现了我所意想不到的效果,但也留下一些遗憾:一是出现了口头语;二是韩帅同学画图时出现的问题若用函数的凸凹性解释会更准确一些,但由于学生还没学函数的这个性质,所以解释的不够准确;三是在解决题组三时学生考虑问题不严谨,分类讨论漏掉自变量一正一负这种情况,在以后的学习中应加强这方面的练习;四是课堂评价更多关注与个人评价,而忽略了小组合作讲评价,评价方式也不够多样。这些不足还有待于我在以后的教学中摸索并改进。
从《函数》这节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一节课下来后学生在基础知识方面不会有什么漏洞。因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,所以我选择在多媒体上课。应该说在设计之初,我是在两种方案中选出的一种为学生节省时间的复习方法,课前的工作全由教师完成,教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。可没想到,在课的进行中,我就听到有的教师在切切私语,都是初三学生了,怎么好象没有几个学习的。我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。以致于面对简单的问题都卡,思维不连续。纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。
课后我找到了科代表,请他们协助我一同反思本节课的优缺点,并把在以往的章末复习时曾采取过的另一种复习方案阐述给他们听,就是课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的.答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。
但是在初三总复习时,我理解学生的忙,所以能包办的我就一律代做,以为这就是帮学生减轻负担,学生自己去做的事是少了,可是需要学生被动记忆的知识多;教师把一节设计的井井有条,想要学生在这一节课里收获更多,但被动的学生并没有全身心的投入到学生中去,降低了课堂效率,又把好多任务压到课下,最后教师减轻学生的课后负担的想法还是落空了。
通过这节复习课的教学让我从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。
通过参与网络环境下的数学集体备课研究实践活动,把本人经过班本处理后的教学设计应用课堂教学之后,现对备课、教学、及理论提升等方面的体会作一反思:
幂函数作为一类重要的函数模型,是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究等函数的图象和性质,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为淅近线,在方法上,我们应注意从特殊到一般进行类比研究幂函数的性质,并注意与指数函数进行对比学习。
将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已学习了,等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识,现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法。所以本人建议,逐个画出五个函数的图象,从定义域、值域、奇偶性、单调性、过定点等方面进行分析、探究,得到各自的性质,从而再归纳出幂函数的基本性质。除内容本身外,掌握研究函数的`一般思想方法也是至关重要的。
学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。
1、网络互动交流是促进教师专业发展的重要方式。
网络环境下的集体备课凭借同行的平等交流、有效的即时互动等优势,吸引不同层次的教师积极参与,不仅突破了时空限制,改变了交流的方式,还拉近了彼此的距离,避免了面对面交流与讨论的“尴尬”,使得平时不敢说话的教师也畅所欲言。因此,创设民主、平等、和谐的交流氛围,组织和引导大家积极发表意见,是网络环境下集体备课的关键环节,是促进教师专业发展的重要方式。只有进行广泛深入交流,才能充分挖掘潜能,深化认识,凝结群体智慧,实现相互促进,相互提高的目的。
2、专家点拨引领是促进教师专业发展的保障。
网络环境下的集体备课注重过程性。即把备课的过程,教学的资料(包括素材、课件等),课后的反思体会,评议等都在备课系统中完成,使教学过程展示得更加完整。教师在备课中针对自己的疑惑,通过网络备课平台提出来,凭借本校或外地专家的点拨引领,是解决现实问题的有效手段,可从中获得高水平的生态取向的群体专业发展。与名师、专家的每一个互动回帖,每一项研讨焦点,每一处观点争鸣,都是教师专业成长的一块块基石,为促进教师专业发展提供保障。如笔者在本节的多次教学设计中经过同行、专家们的不断点评回复,反复修改,拾级而上,从中看到了专家点拨在教师专业发展中发挥的作用。
结合自己的教学发现存在许多不足的地方,为了更好的加强教学,提高教学效率,对本节教学反思如下:
一:应用传统的以旧带新方法,利用学生在初中学习过的锐角三角函数,对给出的一个锐角,借助三角板构造直角三角形,找出它的正弦、余弦的近似值是很容易的事,而恰恰在这一点上,学生耗费了大量的时间,而教师又不想越俎代庖地告诉学生,这就严重影响了后续建立任意角三角函数的概念,并通过特殊角的求值体验、把握内涵的时间保证,造成体验不够,概括过早,应用更少的现象.
二:问题教学设计不够合理。没有准确把握学生的知识。
基础与认识能力,教科书在节首提出的“思考”是:“我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上的`点的坐标来表示锐角三角函数吗”其实,学生只知道锐角三角函数是直角三角形中边长的比值,并不完全知道“它们都是以锐角为自变量,以比值为函数值的函数”,这就需要通过复习,来帮助学生补上这一点.
三:思想方法渗透不是很到位:这一节课把教学的基本要求定位在,弄清任意角三角函数与锐角三角函数的区别,接受用坐标(或坐标的比值)表示三角函数就够了.但需要注意的是,应该通过什么方式让学生建立起用坐标(或比值)表示任意角三角函数,以及领会建立这个概念过程中所蕴涵的数学思想方法.
通过以上反思:认识到课堂教学是一项实践性很强的工作,除了认真的课前准备外,对教学过程中出现的“突发事件”,随机应变十分重要.教师需要关注学生的学习行为,关注学生的认识过程,随时修改自己的教学设计,调整教学内容、教学要求,改变策略,选择恰当的方法实施教学,以达到最佳教学效果.
幂函数是函数教学的最后一个函数,在通过学习了指数函数与对数函数之后,同学们已经基本掌握了研究函数的一般方法,因此幂函数是交给学生自主研究的一个重要的契机。函数的学习,目的在于通过对几个基本初等函数的研究让学生掌握研究一个陌生函数的方法。
基于以上认识,确定本节课的教学目标如下。
(1)引导学生从具体实例中概括典型特征,形成幂函数的概念,并用数学符号表示。
(2)运用数学结合的思想,让学生经历从特殊到一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。
(3)能够利用幂函数的性质比较两个数的大小。
教学重点与难点如下。
教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质。
教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质。
本节课的.教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。
本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用。
2.1创设情境建构概念。
问题1(1)正方形的边长a与面积s之间是函数关系吗?
(2)正方体的边长a与体积v之间是函数关系吗?
【设计意图】从实际的问题引入,让学生感受幂函数与实际的联系,初步感受幂函数。
学生找到两个变量之间的函数关系,并给出函数的解析式:和。
师:我们把形如的函数称为幂函数。
直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。
生:是一条直线。
师:你确定是一条直线吗?
生:是一条直线去掉一个点师:为什么?
生:定义域中x不能取到0。
师:我们研究函数一般先看函数的定义域。
师:我们可以先研究的情况,你打算研究为哪些值?
【设计意图】引导学生思考如何选取的研究起来比较方便,一般学生会选择为1,2,3来进行研究,实际操作中因为笔者的课堂利用了图形计算器,也可以让学生多取一些值,借助于图形计算器让学生绘制更多幂函数的图像,从而概括得到一般幂函数的图像与性质,这样学生的学习自主性更强,教师可以减少一些介入。
我用五个具体的生活实例激活学生的求知欲望,明确将要研究的问题通过对指数n的选取,让学生在亲身体验和实践中,形成对图象的认知。在改变学生学习方式的同时,我有了看学生“做数学”的机会。
我适时地将几个函数的解析式写在黑板上,引发学生做出判断,这对于每一个学生而言,不仅是参与,更是对幂函数解析式特征的意义建构,因为对错误的剖析过程及受挫的经历,会对学生今后的概念学习产生指导性的影响。这种有学生思维参与并从中获得认知体验的学习,要比我直接正面的说教意义大得多,学生可从中发展其元认知水平。学生交流的环节反映出了问题解答中学生不断循环递进的认识过程,它启迪了学生的问题意识。也告诉教师这样的教学方式有利于学生的学。
我将学生给出的幂函数图象随时记录在黑板上,不仅是展示,是切磋,更想通过对图象的归纳过程使学生对繁多幂函数图象的认知逐渐清晰。而这一切是建立在学生归纳图象过程中思考问题的角度和处理问题的方法的体验之上。所以,我有意识的把记录图象的过程,设计成学生的认知活动。同时为后面学生观察归纳幂函数的性质创设问题情境。
在通过几个幂函数的图像分析后,我问学生能下结论了吗?“实际上是要给出结论。不料想学生能从有理数分类的高度,用数形结合的思想作答。这不仅能使学生对幂函数图象的归纳在认知上产生升华,对我的认知结构也产生了触动,的确学生有效的学习方式是以教师教的方式为前提的。
我把学习的主动权教给了学生。我认为书上给出的若干条性质学生即使说不全,总能说出一、二条。重要的是让每个学生都来参与,都有体验,不料想一发不可收拾,学生智慧的火花洒向四面八方,使教师的认知结构又一次受到冲击。此时,我强烈的意识到,不能在自己讲下去了,学生必须成为学习的主人。
课堂现实表明:“教”不再代替“学”,“学”也不再一味依赖“教”。而是教学相长。教学只要坚持以学生为主体,体现过程教学的思想,学生这本活书会促进教师的成长。
“我动手做过了便理解了”————幂函数的图像和性质。
通过这节课的教学,使我联想到一个故事:几位游客去市郊的野生动物园游览,几只天鹅在水面追逐嬉闹,时而徜徉自在的`天鹅,吸引他们驻足观赏。如此近距离接触天鹅,他们还是第一次。天鹅是一种侯鸟,有着长徒迁移的习性,每年都要飞越千山万水。可眼前的天鹅为什么长年就呆在这一块狭小的水域里,而不会飞走呢?几位游客你一言我一语地猜测起来,可能它的羽毛被人剪得较短,也许被系住在某一个固定的地方,或许天鹅的双脚套着沉重的铁环,他们饶有兴趣的争论着。一边走进天鹅,近距离观察,什么也没有发现。一位饲养员走了过来,说:“在不破坏天鹅高贵秀雅的观赏的姿态的情况下,尽量缩小水域的距离,四周设制一定高度的栏杆。天鹅在飞翔时,必须有一定的距离提供来滑翔。如果天鹅滑翔的距离较短,天鹅就无法飞出。”久而久之,天鹅也就不飞了。
——天鹅飞行需要足够的滑翔距离;
——学生的能力培养需要我们老师给他们足够的思维空间。
《指数函数》是人教b版高中数学必修1第三章第二节第1课时,是继第二章函数的概念、函数的性质、一次函数、二次函数之后,学生要认识的一个新的函数。下面是我对本节课的教学反思:
上课前认真备课,多次请教了指导教师孙久志老师的意见与建议,在他的指导下,我对新课标和新教材有了较为整体的把握和认识,将知识系统化,注意知识前后的联系,形成了知识框架,了解了学生的现状和认知结构,做到了因材施教。
这是本节课的一个成功之处,整堂课的问题情景创设很恰当,几乎所有的结论都是在教师的引导下,学生自己总结出来的。
本节课是以问题的形式引入,采用两个实际问题,既激发了学生学习的积极性,又让他们体会到数学是来自于生活,也是服务于生活的。引出函数的一般式12y=ax'type="#_x0000_t75"以后,我又让学生自己举几个例子,他们举的例子中有a=1,a=0,a0的情况,我又是以提问的形式让学生自己分析相应的函数定义域与函数值,结果学生自己意识到这些情况不必研究或者不容易研究,自然的得到了参数a0且a12鈮?'type="#_x0000_t75"的范围,进而让学生自己求出此时函数的定义域,此时指数函数的定义已经呼之欲出,不言自明了,甚至学生自己已经可以给指数函数下定义了。
本节课的另一个成功之处就是采用“引导启发探讨”式教学,在授课的过程中,我一直在和学生进行探讨,让学生自己举例子,自己画图象,自己归纳概括。刚上课的时候,有位同学就对我们举的例子提出了问题,我耐心地进行了解答,正好他的问题也为下一步的讨论提供了思路,我就顺势进行了。其实在平时的课堂中,我就比较注意和学生的交流,尽量地让学生把问题暴漏出来,因为这样的问题一般就是大家共同的问题。在和学生探讨指数函数的特性时,他们观察得非常细致,几乎把图象上能反映出来的函数性质都说出来了,每位发言的同学我都给予了肯定,大家很积极,有位同学还说出了函数增长速度的问题,我就顺势讲了一个与此有关的故事,大家听得津津有味。
本节课的第三个成功之处是:教学课件用得恰到好处,我采用的是几何画板数学软件,非常形象直观地展示了描点法作图的全过程,因为这个过程是我们归纳图像与性质的一个准备工作,应该向学生展示,但是如果在黑板上演示,既要花费大量的时间,对于较精确的计算也无法进行。几何画板正好解决了这个问题,通过演示,让学生了解到数学需要严谨科学的计算,而且数学其实也是一种很美的科学。但是数学这门学科又要求老师要正确规范地板书,除了练习、例题的题目和作图的过程,其他重要内容我都进行了规范的板书,让学生的思维始终跟着我。在课堂中,我还用投影仪展示了个别学生的作业,进行了点评,让学生发现自己学习中的优点和缺点。
对于学生创造性的回答我给予了鼓励与肯定,而对于学生不足甚至错误的回答,指出了不足,但没有损伤其自尊心和自信心。在新课标下,我们的学生应该是自由的、真实的、快乐的、幸福的。我们的数学课堂教学,应该从数学的实际出发给学生自由、真实、快乐、幸福。
在让学生归纳指数函数的图象时,学生总结了a1与01的代表就是我们画出的12y=2x涓?/m:tm:rpry=3x'type="#_x0000_t75"的图像,而0y=(13)x'type="#_x0000_t75"的图像,这样就更形象直观一些;由于上课的教室听不见铃声,时间控制得不是很准确,提前了一分钟下课,如果能利用这一分钟再稍深入地探讨一下例2中利用找中间量的方法比较两个幂的大小,这堂课就更加完满,虽然是一个很小的问题,不影响整堂课的效果,但是却提醒我自己在平时的上课中就得注意小的细节问题;板书方面,行与行的疏密控制得不够准确,导致最后一行的空间有点小了。
1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。
2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。
1.关于三角函数的教学,应注意以下问题:
(1)要根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型的意义。例如,通过单摆、弹簧振子、圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型。
(2)借助单位圆,帮助学生直观地认识任意角的三角函数,理解三角函数的周期性、诱导公式、同角三角函数关系式,以及三角函数的图象和基本性质。引导学生自主地探索三角函数的有关性质,培养他们分析问题和解决问题的能力。
(3)弧度是学生比较难接受的概念,教学中应使学生体会弧度也是一种度量角的单位,可在后续课程的学习中逐步理解这一概念,在此不作深究。
2.关于平面向量的教学,应注意以下问题:
(1)向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。了解这些物理背景和几何背景,对于学生理解向量概念和运用向量解决实际问题都是十分重要的。
(2)引导学生运用向量解决一些物理和几何问题。例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题。对于用向量解决较为复杂的平面几何问题不作要求。
(3)向量的非正交分解、向量投影的概念只要求了解,不必展开。线段定比分点坐标公式及应用不作要求。
3.三角恒等变换的教学,应注意以下问题:
(1)教学中,注意展示数学发现的过程,可以引导学生利用平面向量的数量积推导出两角差的余弦公式,并由此公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。
(2)鼓励学生独立探索和讨论交流,引导学生推导积化和差、和差化积、半角公式,以此作为三角恒等变换的基本训练。
(3)能利用同角三角函数的基本关系式、诱导公式、两角和与差的三角函数公式、二倍角的三角函数公式,进行简单的三角函数式的化简、求值及恒等式证明。其中,简单的三角函数式的化简、求值及恒等式证明指三角函数变形的次数一般不超过三次,整个解题过程中三角函数公式的使用一般不超过5个。
在新课程中,教学过程要符合学生学习过程,学生在学习过程中应该以探究、实践、合作学习为重,要善于引导学生积极参与教学过程中的探讨活动,让学生在动手实践、自主探究与合作交流的过程中来学习数学。教师的教学活动要能激发学生探求新知识的兴趣和欲望,逐步培养他们提问的意识,鼓励学生多思考。同时还要关注他们在数学学习过程中的变化和发展,关注学习方法与习惯的养成。
在初中一元二次方程和二次函数学习的基础上,教学中通过比较一元二次方程的根与对应的二次函数的图象和x轴的交点的横坐标之间的关系,给出函数的零点的概念,并揭示了方程的根与对应的函数的零点之间的关系.然后,通过探究介绍了判断一个函数在某个给定区间存在零点的方法和二分法.并且,教科书在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法内容埋下伏笔.
教学中,对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.分三步来展开这部分的内容.第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.
除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型.教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象或工具,将各部分内容紧密结合起来,使之成为一个系统的整体.教学中应当注意贯彻教科书的这个意图,是学生经历函数模型应用的完整。
这节课安排在正比例函数的图象与一次函数的概念之后,内容包括:一次函数的图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是以后继学习“用函数的观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用,还是学生进一步学习“数形结合”这一数学思想的很好素材。
在教学过程中,考虑到学生在学习本节内容之前,已对正比例函数的图象和性质有了一定的认识,因此,首先给出一个正比例函数和一次函数,让学生通过对应描点法画出它们的图象,在对应描点这一活动过程中,让学生体验几组对应点的位置变化,感悟一次函数图象的'形状以及与正比例函数图象的位置关系,在此基础上归纳得出“一次函数的图象是一条直线”这一事实,紧接着根据这个事实,让学生利用两个点画出一次函数的图象。对于一次函数性质的教学,着眼于一次项项数k的变化设计了四个一次函数,让学生先画出它们的图象,再观察相应图象的变化趋势,并类比正比例函数的性质,进而归纳出一次函数的性质。通过这种注重过程和体验的再设计、凸显本节课的教学重点,最后在练习和作业中,设计的几个习题,加深学生对本节知识的理解和应用。
这节课立足于学生的已有知识,把教学重点分解为一系列富有探究性的问题,让学生在解决问题的过程中,经历知识的发生、发展、形成的过程,把知识的发现权交给学生,让他们在获取知识的过程,体验成功的喜悦,真正体现学生是学习的主人,而老师只是学习的参与者、合作者、引导者,在教学活动中,老师重点是关注学生的实践能力,探究精神和交流合作意识,强调过程性评价。
幂函数的教学反思简短(精选14篇)
文件夹