初一数学知识点归纳整理笔记 初一数学知识点归纳(三篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
初一数学知识点归纳整理笔记 初一数学知识点归纳篇一
②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2
注意:|a|+b2=0 得:a=0 且 b=0
强记:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;
-13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8
③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,
从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、
大括号依次进行。注意:12-4×5=12-20(不能把-变+)
④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a n比原整数位减1。(注意科学计数法与原数的互划。
⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55. (再如: 2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。
初一数学知识点归纳整理笔记 初一数学知识点归纳篇二
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;
(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的'两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:
绝对值的问题经常分类讨论;
(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
初一数学知识点归纳整理笔记 初一数学知识点归纳篇三
一、同底数幂的乘法
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b)指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
二、幂的乘方与积的乘方
三、同底数幂的除法
(1)运用法则的前提是底数相同,只有底数相同,才能用此法则
(2)底数可以是具体的数,也可以是单项式或多项式
(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负
四、整式的乘法
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
五、平方差公式
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
公式运用
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
六、完全平方公式
完全平方公式中常见错误有:
①漏下了一次项
②混淆公式
③运算结果中符号错误
④变式应用难于掌握。
七、整式的除法
1、单项式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。
0>