2025年高中数学试讲教案设计 高中数学试讲教案精选(五篇)
文件格式:DOCX
时间:2023-04-01 00:00:00    小编:方葵花

2025年高中数学试讲教案设计 高中数学试讲教案精选(五篇)

小编:方葵花

作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。那么教案应该怎么制定才合适呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。

高中数学试讲教案设计 高中数学试讲教案篇一

了解双曲线的定义,几何图形和标准方程,知道它的简单性质。

【自学质疑】

1.双曲线的轴在轴上,轴在轴上,实轴长等于,虚轴长等于,焦距等于,顶点坐标,焦点坐标

2.又曲线的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是

3.经过两点的双曲线的标准方程是。

4.双曲线的渐近线方程是,则该双曲线的离心率等于。

5.与双曲线有公共的渐近线,且经过点的双曲线的方程为

【例题精讲】

1.双曲线的离心率等于,且与椭圆有公共焦点,求该双曲线的方程。

2.已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。

3.设双曲线的半焦距为,直线过两点,已知原点到直线的距离为,求双曲线的离心率。

【矫正巩固】

1.双曲线上一点到一个焦点的距离为,则它到另一个焦点的距离为。

2.与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是。

3.若双曲线上一点到它的右焦点的距离是,则点到轴的距离是

4.过双曲线的左焦点的直线交双曲线于两点,若。则这样的直线一共有条。

【迁移应用】

1.已知双曲线的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率

2.已知双曲线的焦点为,点在双曲线上,且,则点到轴的距离为。

3.双曲线的焦距为

4.已知双曲线的一个顶点到它的一条渐近线的距离为,则

5.设是等腰三角形,则以为焦点且过点的双曲线的离心率为.

6.已知圆。以圆与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为

高中数学试讲教案设计 高中数学试讲教案篇二

教学目的:

掌握圆的标准方程,并能解决与之有关的问题

教学重点:

圆的标准方程及有关运用

教学难点:

标准方程的灵活运用

教学过程:

一、导入新课,探究标准方程

二、掌握知识,巩固练习

练习:⒈说出下列圆的方程

⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

⒉指出下列圆的圆心和半径

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判断3x-4y-10=0和x2+y2=4的位置关系

⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过a(-10,0)、b(10,0)、c(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求a2p2的长度。

例3、点m(x0,y0)在x2+y2=r2上,求过m的圆的切线方程(一题多解,训练思维)

四、小结练习p771,2,3,4

五、作业p811,2,3,4

高中数学试讲教案设计 高中数学试讲教案篇三

1.课题

填写课题名称(高中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书

高中数学试讲教案设计 高中数学试讲教案篇四

教学准备

教学目标

运用充分条件、必要条件和充要条件

教学重难点

运用充分条件、必要条件和充要条件

教学过程

一、基础知识

(一)充分条件、必要条件和充要条件

1.充分条件:如果a成立那么b成立,则条件a是b成立的充分条件。

2.必要条件:如果a成立那么b成立,这时b是a的必然结果,则条件b是a成立的必要条件。

3.充要条件:如果a既是b成立的充分条件,又是b成立的必要条件,则a是b成立的充要条件;同时b也是a成立的充要条件。

(二)充要条件的判断

1若成立则a是b成立的充分条件,b是a成立的必要条件。

2.若且ba,则a是b成立的充分且不必要条件,b是a成立必要且非充分条件。

3.若成立则a、b互为充要条件。

证明a是b的充要条件,分两步:__

(1)充分性:把a当作已知条件,结合命题的前提条件推出b;

(2)必要性:把b当作已知条件,结合命题的前提条件推出a。

二、范例选讲

例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?

(1)在△abc中,p:a>b q:bc>ac;

(2)对于实数x、y,p:x+y≠8 q:x≠2或y≠6;

(3)在△abc中,p:sina>sinb q:tana>tanb;

(4)已知x、y∈r,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0

解:(1)p是q的充要条件 (2)p是q的充分不必要条件

(3)p是q的既不充分又不必要条件 (4)p是q的充分不必要条件

练习1(变式1)设f(x)=x2-4x(x∈r),则f(x)>0的一个必要而不充分条件是( c )

a、x<0 b、x<0或x>4 c、│x-1│>1 d、│x-2│>3

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
2025年高中数学试讲教案设计 高中数学试讲教案精选(五篇) 文件夹
复制