2025年数学高一必修三知识点总结(优秀8篇)
文件格式:DOCX
时间:2023-04-01 00:00:00    小编:公务员干货

2025年数学高一必修三知识点总结(优秀8篇)

小编:公务员干货

总结是一种反思和思考的方式,它可以帮助我们发现问题并找到解决之道。写总结时要注意字数的控制,不要过长或过短,要力求言之有物。这些范文可以帮助我们更好地理解总结的要点和重点。

数学高一必修三知识点总结篇一

11三视图:

正视图:从前往后。

侧视图:从左往右。

俯视图:从上往下。

22画三视图的原则:

长对齐、高对齐、宽相等。

33直观图:斜二测画法。

44斜二测画法的步骤:

(1).平行于坐标轴的线依然平行于坐标轴;。

(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;。

(3).画法要写好。

5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图。

1.3空间几何体的表面积与体积。

(一)空间几何体的表面积。

1棱柱、棱锥的表面积:各个面面积之和。

2圆柱的表面积3圆锥的表面积。

4圆台的表面积。

5球的表面积。

(二)空间几何体的体积。

1柱体的体积。

2锥体的体积。

3台体的体积。

4球体的体积。

数学高一必修三知识点总结篇二

一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。

例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。

班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。

解集合问题的关键。

解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。

数学高一必修三知识点总结篇三

棱锥的的性质:

(1)侧棱交于一点。侧面都是三角形

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp:

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

数学高一必修三知识点总结篇四

集合的中元素的三个特性:

元素的确定性如:世界上的山。

元素的互异性如:由happy的字母组成的集合{h,a,p,y}。

元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合。

3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}。

用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}。

集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:n。

正整数集n_n+整数集z有理数集q实数集r。

列举法:{a,b,c……}。

语言描述法:例:{不是直角三角形的三角形}。

venn图:

4、集合的分类:

有限集含有有限个元素的集合。

无限集含有无限个元素的集合。

空集不含任何元素的集合例:{x|x2=—5}。

数学高一必修三知识点总结篇五

均匀随机数的产生:

我们常用的是[0,1]上的均匀随机数,如果试验的结果是区间[0,1]内的任何一个数,而且出现任何一个实数是等可能的,因此就可以用计算器来产生0~1之间的均匀随机数进行随机模拟,我们常用随机模拟的方法来计算不规则图形的面积。

均匀随机函数:

均匀随机函数且只能产生[0,1]区间上均匀随机数。

产生[a,b]区间上均匀随机数:

产生[a,b]区间上均匀随机数,如果x是[0,1]区间上的均匀随机数,则x(b-a)+a就是[a,b]区间上的均匀随机数。

计算机通过产生均匀随机数进行模拟实验的思路:

(2)根据总体对应的区域确定产生随机数的范围;

(3)根据事件a发生的条件确定随机数所应满足的关系式。

数学高一必修三知识点总结篇六

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无xx。

奇偶性。

定义。

一般地,对于函数f(x)。

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

数学高一必修三知识点总结篇七

2、函数单调性的判断和证明:

(1)定义法。

(2)复合函数分析法。

(3)导数证明法。

(4)图象法。

二、函数的奇偶性和周期性。

1、函数的奇偶性和周期性的定义。

2、函数的奇偶性的判定和证明方法。

3、函数的周期性的判定方法。

三、函数的图象。

1、函数图象的作法。

(1)描点法。

(2)图象变换法。

2、图象变换包括图象:

平移变换、伸缩变换、对称变换、翻折变换。

数学高一必修三知识点总结篇八

本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。

1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

2、用函数解应用题的基本步骤是:

(1)阅读并且理解题意。(关键是数据、字母的实际意义);

(2)设量建模;

(3)求解函数模型;

(4)简要回答实际问题。

常见考法:

本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

误区提醒:

1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

【典型例题】

例1:

(1)某种储蓄的月利率是0。36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利)。

(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2。25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0。36x,当x=5时,y=101。8,∴5个月后的本息和为101。8元。

例2:

某民营企业生产a,b两种产品,根据市场调查和预测,a产品的利润与投资成正比,其关系如图1,b产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

(1)分别将a,b两种产品的利润表示为投资的函数,并写出它们的函数关系式。

(2)该企业已筹集到10万元资金,并全部投入a,b两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
2025年数学高一必修三知识点总结(优秀8篇) 文件夹
复制