无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
在备课过程中,我只是借助教学用书分析了教材,明确了教材的重点与难点及练习的编者意图;然后从网络上下载了两篇教学设计,发现设计都很繁琐,不合简约要求,于是根据教学目标及简真课堂的三个环节领受、领悟、提升,围绕教学重点与难点设计了较为简洁、清晰的教学流程。用课件辅助教学,细想也只能起到小黑板的作用,也就是根据试商情况写出正确的商和改错两题,便于集体校对。简约的设计让我在课堂教学中能清晰地把握教学流程,较好地突出教学重点与难点。
我们都知道,试商和调商的过程对学生的口算能力要求较高,口算能力直接关系到笔算的正确率与速度。课始我安排了本节课要用到的相关口算与最大能填几,目的是为了给学生的试商打下基础。由于该班学生是本人刚接的,一些训练还只是刚刚开始,有些学生一时还不能适应,这些都有待今后的持续训练。
本课重点是让学生经历试商,发现问题后再调商,感悟调商过程的必要,领会商变大的原因,掌握调商的方法。这一过程经历了尝试、合作、交流,再独立笔算,再小结等环节。力求突出并突破教学的重点与难点。
课后,本人感觉学生是领悟了调商,但多数学生是重复耗费了更多的时间,因为学生在尝试做272÷34时,就已经知道将初商改小后重新计算,并算出了正确的结果。在巡视时,发现了这一情况,我将原先设计的教学流程作了一定调整,但惟恐学生难以掌握调商的算理,接着还是按照预设的流程进行教学并在练习的过程中所用时间较多,导致后面教学时间就显得比较紧张。
高效课堂是我们追求的共同目标。本课的试商速度与准确率直接影响到调商,是本课取得高效的最关键环节。前几课,学生已经掌握了用四舍五入法试商的方法,而且商不需要进行调整,学生已经习惯了在竖式上直接试商,因此本堂课学生试商后发现商嫌大就擦掉后重新计算,这样不但影响了计算速度练习书面上也欠美观。于是我让学生们讨论怎样试商会更好,开始没有几人能想到其它方法,在我的提示之下,一个学生说可以在草稿上试商,可是他还是用的除法竖式。我再次提示,是否可以只用初商乘以除数的方法来试商,乘法竖式是否比除法更方便,于是孩子们才想到应该是这样的。但是,由于时间等因素,我并没有让学生们作以乘法替代除法进行试商,然后调商的练习,多数学生还是用的除法竖式进行试商,整个计算过程没有能明显加快速度,也没能特别提醒学生或鼓励学生试商时不要急躁,要耐心细致地进行试商调商,使得计算能够正确。在草稿纸上列出整齐而准确的过程,需加强训练。总之,要真正达到简真课堂的目标,我的课堂教学还需要继续努力。
四年级上学期开学第一章学的是《三位数除以两位数》,虽然三年级的时候学习过,但是对于四年级的《三位数除以两位数》这一单元的学习,学生学习起来仍然很困难。可以用一句话来概括“教师教得吃力,学生学得痛苦”。
一、每节课前5分钟说口算练习题(10题左右),提高学生口算能力。口算是计算中的基础,通过口算熟练掌握乘法口诀,退位减及乘法进位。
二、除法的竖式计算相对来说比较抽象,为避免学生产生对抗情绪,在练习时也采取多种形式,如请学生上黑板板演(每个小组派1—2名代表)进行比赛,给学生展示的机会,然后优生批阅。
3、加强估算练习,估算练习所给算式的商是几位数,商的最高位可能是几。这样练习所用时间不多,但对学生的计算有很大帮助,可以提高学生的估计能力以及数学思考能力。
三位数除以两位数的教学不是一朝一夕的事情,在以后的教学中,可以采用穿插、点滴渗透本单元的除法知识,相信通过日积月累的计算积累,学生的计算的准确率和速度都会有很大的提高。
虽然三年级的时候学习过《两位数除以一位数》,但是对于四年级的《三位数除以两位数》这一单元的学习,学生学习起来仍然很吃力。可以用一句话来概括“教师教得痛苦,学生学得痛苦”。
第一个课时讲的是三位数除以整十数,这个难度不是很大,也教会了学生正确判断商是几位数,但在后面的学习内容中教学“试商和调商”时,学生就感觉有些无处下手。一道计算题,全班的差距很大,做的快的与做的慢的能差好几分钟。
从课堂效果和作业情况反映出来的问题主要有这样几个方面:
1、商的位置的确定:当练习中同时出现商可能是两位数也有可能是一位数时,有些学生的错误率就比较高,有的明明被除数的十位不够商,却还要去商;有的确定十位商后,余数与个位合起来除,学生不知道商几;遇到不够商1要商0时,学生遗漏;有些学生把除数看着一位数,把末尾的0忽略不看,直接用一位数除法计算了。
2、在试商的过程中不知道商几。
3、在乘的过程中经常把初商和想出来的整十数相乘。
4、学生第一次除后,减法不彻底(连续退位减法不熟练),导致后面计算出错。
5、学生做题目时,余数忘写,横式答案抄错。
我想出现这些原因在所难免,从我本人来讲,我布置学生预习,及时掌控学生可能的错误,每天认真备课,把握课的`重难点和目标,上课上的很慢生怕后进生不会,可还是出现这些问题,只能说:部分学生基础不好,速度慢;部分学生注意力不够集中。比如祁同学,上课不听,课间找不到人,作业拖拉,其实他完全能跟上。再比如张同学、赵同学、施同学基础和智力都有点滞后。
1、每天课前2分钟口算(12题),提高学生口算能力。口算是计算中的基础环节,通过口算熟练掌握乘法口诀,退位减及乘法进位。
2、加强估算,估算练习所给算式的商是几位数,商的最高位可能是几。这样练习所用时间不多,但对学生的计算有很大帮助,可以提高学生的估计能力以及数学思考能力。
3、教给同学们除法竖式的口诀:一想(把除数四舍五入想成整十数),二商,三乘(和原来的除数相乘),四减(注意连续退位)。
4、做好批改记录,针对个别学生遇到困难或疑惑的地方给予一对一指导和帮助。
5、汇集学生错误,全班会诊“找错”。通过反例让学生寻找错误,在改正错误的过程中建立正确的思考方法,形成计算策略。
今天,教学了三位数除以一位数的笔算除法,这节课是在学生学习了两位数除以一位数的基础上教学的,这节课是本单元教学的一个难点。
(1)对于首次接触三位数除以一位数,学生一下子很难适应,我应该在给学生复习了两位数除以一位数后,继续创设一个三位数除以一位数(商是三位数)的题目,让学生在一步步的引导和尝试中,进入今天学习的内容:一个三位数除以一位数(商是两位数),然后让学生比较两题,引导学生得出结论:三位数除以一位数,从最高位除起,当最高位不够除时,应看下一位,然后商也要写在相应的位置上。
(2)在探究算理时,我也引导不是很到位。如果学生说23表示230时,我及时引导表示23个什么,就不用费那么多时间学生却说不出了,这样就有了练习的时间,不至于教学效果没有得到很好的反馈,造成这节课的不完整了。
(3)在学生上黑板板演出错时,我不应该那么的心急的去指导那位学生,而应该把这当做我的教学资源,让在下面做题的同学尝试发现上来做题的同学的错误,然后以此为鉴,这样学生下次做题也能够避免犯同样的错误了。
在这一节课里,有很多不如意的方面,也引发了我深深的思考,在备每一节课的时候,不应该为了教学进度而把学生的实际落在一遍,在今后的备课里,我应该要找准每堂课要求掌握的基本点,围绕基本点备足学生可能出现的情况及应对措施,这样就不至于出现某一环节出问题而影响整体计划,完不成课堂教学任务的情况。
虽然二年级的时候学习过《两位数除以一位数》,但是对于三年级的《三位数除以一位数》这一单元的学习,学生学习起来仍然很吃力。可以用一句话来概括“教师教得痛苦,学生学得痛苦”。
1、商的位置的确定:当练习中同时出现商可能是两位数也有可能是三位数时,有些学生的错误率就比较高,有的明明被除数的百位不够商,却还要去商;有的确定十位商后,余数与个位合起来除,学生不知道商几。
2、在试商的过程中不知道商几。
3、在乘的过程中经常把商和想出来的整十数相乘。
4、学生第一次除后,减法不彻底(连续退位减法不熟练),导致后面计算出错。
5、学生做题目时,余数忘写,横式答案抄错。
学生出现这些问题,主要是因为教师过高估计学生的已有知识,为了节约时间,来创设有利于学生自主探究的学习情境,而抛弃了复习旧知。没有对旧的唤醒,学习效果不理想,只能课内损失课外补。而其课堂计算训练的量不够,课堂上因一些情境让计算时间流失。部分学生基础不好,速度慢;部分学生注意力不够集中。没有参与探究活动中。
1、及时复习“两位数除以一位数除法笔算,并将计算方法与“三位数除以一位数(商是两位数的除法笔算)相联系,使学生体会到“商是两位数”就需要试商两次,就需要经历两次估商的过程。
2、教给同学们除法竖式的口诀:一想(把除数四舍五入想成整十数),二商,三乘(和原来的除数相乘),四减(注意连续退位)。
3、做好批改记录,针对个别学生遇到困难或疑惑的地方给予一对一指导和帮助。
4、通过教材中的题组对比让学生明确商的位置取决于被除数的大小。
5、汇集学生错误,全班会诊“找错”。通过反例让学生寻找错误,在改正错误的过程中建立正确的思考方法,形成计算策略。
在前两节课的基础上,今天我教学《三位数除以两位数的笔算》本节课是在学生掌握了除数是整十数的笔算方法的基础上学习的。
本课内容的教学知识目标是通过具体情境让学生在独立探索的过程中经历三位数除以两位数试商的方法,会用“四舍五入”法进行试商。
(2)商“6”必须和除数32相乘,不能和30相乘。第二步,让学生通过验算证实这样的试商方法是合理的、可行的。第三步是“试一试”,让学生独立计算192÷39,被除数192不变,除数从32变成39,引导学生主动地把39看成40试商,再次经历把除数看成最接近的整十数试商的过程,体会试商方法。第四步,让学生回顾例题和“试一试”的试商,初步总结“除数是两位数的除法可以怎样试商”。第五步,在“想想做做”里安排说试商方法的练习,促进方法的内化。
在教学中,我只通过一部分必要的点拨和提出一些挑战性的问题,没有更多的说教,反而学生在我讲的每一步时,都自信地说:“我们自己能行!”虽然,在课堂作业仍出现类似“商6跟30相乘”的现象,我认为这对小部分孩子来说需要一个过程,他们会通过晚上的练习及明天的练习课,证明他们也能行!