最新高考常考数学知识点总结归纳 高考数学常考的24个知识点三篇(精选)
文件格式:DOCX
时间:2023-04-01 00:00:00    小编:B站经济金融一点通

最新高考常考数学知识点总结归纳 高考数学常考的24个知识点三篇(精选)

小编:B站经济金融一点通

总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。怎样写总结才更能起到其作用呢?总结应该怎么写呢?以下是小编精心整理的总结范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

高考常考数学知识点总结归纳 高考数学常考的24个知识点篇一

>高考文科数学答题方法

高考文科数学答题技巧之一就是规范书写,这一点是文理通用的技巧。卷面评分标准就是规范度,这就要求不但要对、而且要全且规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,“感情分”也就相应低了,所以高考答题书写要工整,保证卷面能得分。

二、讲究策略

对于高考文科数学题要力求做的对、全、得满分,高考文科数学有两种常用方法:

1。分步解答:对于疑难问题,考生可以将它划分为一系列的步骤,先解决问题的一部分,能解到几步就写几步,每进行一步就可得到这一步的分数,也可以把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。从局部到整体,形成思路,获得解题成功。在高考文科数学答题过程中尽量多的列举应用到的公式。

2。跳步解答:当文科数学在解题的某一环节出现问题时,可以跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

三、合理分配时间

1、文科数学就是和时间的斗争。高考文科数学试卷一发下来后,首先把全部问题看一遍。找出其中看上去最容易解答的题,然后假定步骤,思考怎么样的顺序解题才最好。

2、切忌不看题目盲目背题,要仔细审题,清楚题目要求你解决什么问题,然后有条不紊迅速解题,提高准确率。

3、解题格式要规范,重点步骤要突出。

4、选择题时间控制在35分中以内。小题小做、巧做、简单做,选择题和填空题要多用数形结合、特殊值验证法等技巧,节约时间。

5、保持心静,以不变应万变。切莫因旁人的翻卷或其他行为干扰自己的解决思路。这些都是高考文科数学应试答题高分技巧。

四、掌握文科数学失分原因

①对题意缺乏正确的理解,应做到慢审题快做题;

②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

③思维不严谨,不要忽视易错点;

④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

var _hmt = _hmt || []; (function() { var hm = element("script"); = "https:///?e26bd5672b6d818dbb400ffe9620c502"; var s = mentsbytagname("script")[0]; before(hm, s); })(); '高考常考数学知识点总结归纳 高考数学常考的24个知识点篇二>高考数学常考知识点

遗忘空集致误

由于空集是任何非空集合的真子集,因此b=?时也满足b?a。解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

忽视集合元素的三性致误

集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

混淆命题的否定与否命题

命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

充分条件、必要条件颠倒致误

对于两个条件a,b,如果a?b成立,则a是b的充分条件,b是a的必要条件;如果b?a成立,则a是b的必要条件,b是a的充分条件;如果a?b,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。

“或”“且”“非”理解不准致误

命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假)。求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。

函数的单调区间理解不准致误

在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

判断函数奇偶性忽略定义域致误

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

函数零点定理使用不当致误

如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
最新高考常考数学知识点总结归纳 高考数学常考的24个知识点三篇(精选) 文件夹
复制