最新用分数表示可能性的大小评课(6篇)
文件格式:DOCX
时间:2023-04-03 00:00:00    小编:职场小咸鱼

最新用分数表示可能性的大小评课(6篇)

小编:职场小咸鱼

作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么我们该如何写一篇较为完美的教案呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。

用分数表示可能性的大小教案用分数表示可能性的大小教学过程篇一

2、教学过程中学生放在学习的主体地位。利用摸球的游戏这一情境让学生有目的深入研究、逐步学会用分数表示可能性大小,使枯燥的知识趣味性,抽象的知识形象化。学生始终处于主动探究之中。培养学生学习数学的兴趣,教师就要为其创设学习数学的情境,让学生去经历、去研究。

3、借助摸牌游戏情境,让学生收集数据,并借助已有的生活经验,自主探索事件发生的可能性是几分之几。并通过练习,进一步体会数学知识间的内在联系,应用学习过可能性的知识解释一些相关的日常生活现象,提出并解决一些简单的实际问题,使学生的数学应用意识有所增强。

4、通过练习,让学生判断简单事件发生的可能性,使学生进一步积累用分数表示事件发生的可能性的经验,加深对可能性大小的认识。通过计算可能性的大小判断游戏规则是否公平,让学生用所学知识解决身边的实际问题,有利于学生在解决问题的过程中进一步掌握用分数表示可能性大小的方法,发展数学应用意识。

用分数表示可能性的大小教案用分数表示可能性的大小教学过程篇二

[教材简析]

[教学重点]

[教学难点]

[教学目标]

[教学过程]

一,复习旧知,唤起经验.

1,在以前,我们已经学习了有关可能性的知识.出示:

用"可能","不可能","一定"填空

今天是星期三,明天( ) 是星期四.

公鸡( )下蛋.

明天( )下雨.

师:以前我们学过可能,不可能,可能性大,可能性小,这节课我们来研究用分数来表示可能性的大小.(板书课题:可能性的大小)

二,创设情境,引导发现

1,教学例1

出示例1场景图,你知道裁判是用什么方法决定谁先发球的吗

用猜左右的方法决定由谁先发球公平吗 为什么 (讨论)

问:可能性是一半用分数怎么表示

板书:1/2

你是怎样理解这里的1/2 2表示什么,那 1呢

分母2表示左右2种情况,分子1表示猜对或者猜错其中的一种.

2,教学试一试

(1)任意摸一个球,摸到红球的可能性是几分之几 (一红一黄)

(5)追问:要使摸到红球的可能性是1/6,口袋里至少要怎么放

三,迁移和提升

1,教学例2

猜猜老师最想摸到的是什么 那摸到它的可能性是几分之几 (生答完课件出示:一共有6张牌,摸到每张牌的可能性都是1/6 .)

提问迁移:

(1)提问:从这6张牌,你还想到什么问题

①任意摸一张,摸到红桃的可能性是几分之几

②任意摸一张,摸到黑桃的可能性是几分之几

③任意摸一张,摸到a的可能性是几分之几

④任意摸一张,摸到2的可能性是几分之几

⑤任意摸一张,摸到3的可能性是几分之几

(2)逐题交流,重点交流第1个问题,明确各种思考方法.

方法可能有:

①一共6张牌,红桃有3张,摸到红桃的可能性是,也就是;

②6张牌平均分成2份,红桃是1份,摸到红桃的可能性是;

(4)拿掉一张黑桃3,现在摸到红桃的可能性是多少 黑桃呢

2,完成p95页试一试:

学生做书上,追问:要怎样做摸到红球和黄球的可能性是相等的呢

四,实践与应用

1,练习十八1

2,提高练习.

(1)出示两家商场的摇奖转盘.(红色为中奖区域)

一家是永乐商场,还有一家是五星商场(八等分圆和十六等分圆,红色各占一份.)

指针停在红色区域的可能性是多少 黄色呢 蓝色呢

(2)联系十八第2题目:(三个正方体)

边讲解,边练习.

把你想法和同桌说一说.(停顿)

五,全课总结,感受价值.

今天我们学习了什么 你有什么收获

六,拓展延伸.

1,出示一个里面装3红2绿的袋子:

提问:摸到黄球的可能性是几分之几 (板书:0)

2,出示一个袋子里面装5个黄球的袋子:

提问:摸到黄球的可能性是几分之几 (板书: =1)

3,出示成语:平分秋色,十拿九稳,天方夜谭,百发百中

4,开心密码

大家猜第一个数字是几 猜中的可能性是多少 (1/6)为什么 (出示第一个数字.)大家猜第二个数字是几 猜中的可能性是多少 (1/5)为什么 ……最后的数字一定是几 猜中的可能性是多少 (1/1,也就是大家平时说的一定,100%.)

设计思路:

用分数表示可能性的大小教案用分数表示可能性的大小教学过程篇三

教学内容:课本第96、97页的第4-7题。

教学目标:

使学生进一步掌握用分数表示实际生活中简单事件发生的可能性的方法,并能根据事件发生的可能性大小的要求,设计相应的活动方案,提高了学生用数表达和交流信息的能力。

教学重点、难点:根据事件发生的可能性大小的要求,设计相应的活动方案。

教学过程:

一、复习

师:你能举例说说上一节课我们学习了什么?

二、新课。

1、出示练习十八第3题。

先让学生说出摸到每张卡片的可能性,再说出摸到奇数和偶数的可能性。让学生先写出答案,再指名说说思考的过程。

2、出示练习十八第4题。

3、出示练习十八第5题。

应引导学生从分数的含义出发,找到符合题义的放法。

4、出示练习十八第6题。

先组织学生讨论:怎样才能列举出“石头、剪刀、布”游戏中可能出现的各种情况?明确方法后,再让学生把题中的表格填写完。

5、出示练习十八第7题。

让学生独立思考回答,并说说怎样想的。

三、应用拓展。

1、按要求进行方案设计。

3、机动题:

用分数表示可能性的大小教案用分数表示可能性的大小教学过程篇四

教学目标:

1、使学生联系分数的意义,初步掌握用分数表示具体情境中简单事件发生的可能性的方法,会用分数表示可能性的大小,进一步加深对可能性大小的认识。

2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

教学过程:

一、创设情境,导入新课

生:相等。

师:如果放入两个红球和一个白球,可能性相等了吗?

生:不相等。

师:我们这节课来研究用分数来表示它们的可能性的大小。(板书课题:可能性的大小)

二、自主探索,合作交流

1、教学例1

出示例1场景图,提问:裁判在做什么?(猜球。场景再现)

师:用猜左右的方法决定由谁先发球公平吗?为什么?

学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。

指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。

师:你是怎样理解这里的1/2?

(评析:联系学生的生活实际,在游戏活动中引导学生探索事件发生的可能性,从“猜左右争夺发球权”的活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,使学生围绕这个问题展开思考和交流。)

2、同步练习

生:1/2

生:1/3

师:袋子里都只有一个白球,摸到白球的可能性怎么会不同呢?

生:第一次口袋里只有两个球,第二次口袋里有三个球。

小组讨论,学生汇报:放5个球,其中白球1个。

(评析:通过学生熟悉的摸球活动,引导学生认识到:有几个球,摸到其中一个球的可能性就是几分之一,帮助学生进一步明确表示可能性大小的思考方法。)

3、教学例2

出示例2中的实物图,让学生说说这6张牌各是什么牌,帮助学生区分“红桃”与“黑桃”。

讨论后明确:一共有6张牌,红桃a有1张,摸到红桃a的可能性是1/6。

一共有6张牌,摸到每张牌的可能性都是1/6。

师:你还想提什么问题?

小组讨论交流汇报。

生1:从中任意摸一张,摸到“2”的可能性是几分之几?

生2:摸到方块2的可能性是1/6,摸到草花2的可能性是1/6,摸到“2”的可能性是1/3。

生3:一共有6张牌,“2”有两张,摸到“2”的可能性是2/6,也就是1/3。

生1:从中任意摸一张,摸到“红桃”的可能性是几分之几?

生2:这6张牌中,红桃有3张,摸到红桃的可能性是3/6,也就是1/2。

请学生自己提问题,自己说可能性。

汇报1:摸到a的可能性是几分之几?

汇报2;摸到红色牌的可能性是几分之几?

汇报3:摸到黑桃3的可能性是几分之几?

(评析:通过讨论使学生明确:从6张牌中任意摸到一张,每一张牌被摸到的可能性都是1/6,从而为解答下面的问题奠定认识基础。教学时,鼓励学生从多个角度进行思考,以促使学生更加透彻地把握问题的实质,丰富学生对基本思考方法的体验。)

4、同步练习

①学生口答第(1)题中的几个问题

②学生讨论:如果指针转动80次,可能有多少次停在红色区域?

指出:由于停在红色区域的可能性是1/8,所以指针转动80次,可能停在红色区域的次数是80次的1/8,也就是10次。

③追问:如果把转盘上的指针转80次,停在红色区域的次数一定是

10次吗?

生:可能是10次,也可能多于或少于10次。

(评析:通过练一练,让学生先用分数表示指针转动后,停在每种颜色区域的可能性,再根据可能性推算指针转动80次,可能停在各种区域的次数。进一步加深对用分数表示的可能性大小的认识。)

三、综合练习,实践运用

1、做练习十八第一题

先让学生根据题意连一连,再指名说说思考的过程。

追问:任意摸一个球,摸到红球的可能性分别是多少?

2、做练习十八第二题

①学生读题后,引导学生列表整理题中的条件。

红色正方体6个面上的数:1、2、3、4、5、6;

绿色正方体6个面上的数:1、1、2、2、3、3;

蓝色正方体6个面上的数:1、2、2、3、3、3。

3、摸球比赛

生:不愿意。

师:为什么?

生:摸到的红球可能性是4/7,摸到黄球的可能性是3/7,比赛不公平。

(评析:通过练习,让学生判断简单事件发生的可能性,使学生进一步积累用分数表示事件发生的可能性的经验,加深对可能性大小的认识。通过计算可能性的大小判断游戏规则是否公平,让学生用所学知识解决身边的实际问题,有利于学生在解决问题的过程中进一步掌握用分数表示可能性大小的方法,发展数学应用意识。)

总评:在游戏活动中引导学生探索事件发生的可能性,先从“猜左右争夺发球权”的游戏活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,让学生在对可能性定性描述的基础上,有意义地接受“猜对或猜错的可能性都是1/2”。然后借助摸牌游戏情境,让学生收集数据,并借助已有的生活经验,自主探索事件发生的可能性是几分之几。并通过练习,进一步体会数学知识间的内在联系,应用学习过可能性的知识解释一些相关的日常生活现象,提出并解决一些简单的实际问题,使学生的数学应用意识有所增强。

用分数表示可能性的大小教案用分数表示可能性的大小教学过程篇五

教学内容:六年级数学上册第94-96页例1、例2及“试一试”、“练一练”和练习十八的第1、2、3题。

教学目标:

2、能根据事件发生可能性大小的要求设计相应的活动方案,能联系实际对可能性大小的计算结果,判断相关游戏的规则是否公平。

3、在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

4、进一步感受数学与生活的联系,明确生活中任何幸运和偶然的背后都有科学规律支配的。

教学重点:会用分数表示简单事件发生的可能性大小。

教学过程

一、创设情境,揭示课题

(1)学生凭生活经验阐述(指明学生交流)。

2、小结:以前我们用“可能、一定、不可能”来描述可能性的大小,那可能性的大小能不能用更简单的数学语言来表示呢?这节课我们继续研究可能性。(板书课题:可能性的大小)

二、初步感知。

1、教学例1

(1)例1场景图 ,提出问题。

谈话:打乒乓是同学们喜爱的一项运动。你们打乒乓球时是怎么决定谁先发球的?(学生根据自己的生活经验介绍一般比赛中的方法。)

提问:用猜左右的方法决定由谁先发球公平吗?为什么?

(2)学生讨论后明确:一共有2种情况,乒乓球可能在左手,也可能在右手,对于运动员来说,无论猜左还是猜右,猜对的可能性是一半,猜错的可能性也是一半。

(3)问:可能性是一半用分数怎么表示?你怎么想到是1/2?

追问:2表示什么?1呢? (及时板书)

(4)小结:乒乓球可能在左手,也可能在右手,所以猜的结果只有“对”或“错”两种可能,猜对与猜错的可能性相等,都是1/2。用这种方法决定谁先发球是公平的。

2、同步体验(第94页的“试一试”)。

课件呈现一个不透明的口袋。

(1)谈话:接着,我们来研究一下摸球活动中的可能性。这个袋子里原来有一些球,现在放入一个红球,从中任意摸出一个球,摸到红球的可能性是几分之几?(学生肯定有疑问)

(2)打开袋子(一红一黄)问:有答案了吗?你怎么想的?

(3)交流中明理:一共2个球,任意摸一个,有2种情况:摸到红球或摸到绿球,所以摸到红球的可能性是1/2。

(6)小结:虽然袋子里红球只有一个,但球的总数发生了变化,所以每次摸到红球的可能性也在变化,可能是1/2、可能是1/3等等。

(7)追问:如果要使摸到红球的可能性是1/6,口袋里至少要怎样放球?(答案不唯一,鼓励学生大胆交流,教师及时给予肯定。)

三、迁移提升。

1、教学例2

出示例2中的实物图:谁来介绍一下这六张牌?(或者让学生一起说说)

(2)交流后明确:因为一共有6张牌,红桃a有1张,摸到红桃a的可能性是1/6。

(4)小结:一共有6张牌,摸到每张牌的可能性都是1/6。

2、提问迁移。

(1)提问:从这6张牌,你还想到什么问题?(同桌交流后指名回答)

(3)逐题交流,重点交流第1个问题,明确各种思考方法。

方法可能有:

③6张牌平均分成2份,红桃是1份,摸到红桃的可能性是1/2。

3、教学“试一试”。

谈话:刚才我们研究的几个问题都是可能性相等的例子,实际生活中遇到的都是可能性相等的情况吗?我们继续研究摸球活动。

(1)课件出示第95页“试一试”题目及图片。

学生独立思考,然后交流各自的想法,多请几位学生来说说。

(2)比比两种球的可能性的大小,思考为什么。

4、谈话:下面请同学们打开课本第96页,独立完成第1题。

课件出示练习十八第1题,学生完成后进行交流,说说自己的想法。

学生在书上写出分数后进行交流,教师及时评价并关注全体学生练习情况。

四、全课总结。

提问:今天我们学习了什么?你有什么收获?你觉得这些知识有什么用?想想,实际生活中还有哪些情况也是可能性知识的运用。(学生举例说明)教师结合学生所举例子简单分析,如抛硬币时出现正面和反面的可能性相等,各是一半,可能性都是1/2;玩飞行棋扔色子时每个数朝上的可能性也是相等的,可能性都是1/6,等等。

五、实践与应用。

1、课件出示练习十八第2题。

(1)学生思考第1个问题,然后交流自己的想法,教师及时评价。

(2)出示第2个问题,学生独立思考并和同桌交流,再请几位学生交流,教师及时评价。

2、课件出示练习十八第3题。

追问:游戏规则怎么改就公平了?

3、课件出示问题:教材95页“练一练”

小结:这只是根据可能性进行的预测,实际结果是不确定的,可能正好是10次,也可能大于10或小于10次。

用分数表示可能性的大小教案用分数表示可能性的大小教学过程篇六

课本第96、97页的第4-7题。

使学生进一步掌握用分数表示实际生活中简单事件发生的可能性的方法,并能根据事件发生的可能性大小的要求,设计相应的`活动方案,提高了学生用数表达和交流信息的能力。

根据事件发生的可能性大小的要求,设计相应的活动方案。

师:你能举例说说上一节课我们学习了什么?

1、出示练习十八第3题。

先让学生说出摸到每张卡片的可能性,再说出摸到奇数和偶数的可能性。让学生先写出答案,再指名说说思考的过程。

2、出示练习十八第4题。

3、出示练习十八第5题。

应引导学生从分数的含义出发,找到符合题义的放法。

4、出示练习十八第6题。

先组织学生讨论:怎样才能列举出“石头、剪刀、布”游戏中可能出现的各种情况?明确方法后,再让学生把题中的表格填写完。

5、出示练习十八第7题。

让学生独立思考回答,并说说怎样想的。

1、按要求进行方案设计。

(1)有两个正方形转盘,任意转动指针,要使a盘指针停在红色区域的可能性为1/4,使b盘指针停在红色区域的可能性为3/8。请你设计各转盘颜色区域,把你的设计画出来,并涂上颜色。

(2)在下面的口袋中放入若干个白球和黑球,任意摸40次,摸出白球的可能是16次(每次摸出球后仍放回)。按照这样的可能性大小,请你在袋中画出两种球的个数。(“○”为白球,“●”为黑球)

学生在练习纸上独立完成后,进行交流,要求说说自己的想法(这两题的答案都一唯一)。

2、总结:可能性和生活联系很密切,课后请同学们做个有心人,用数学的眼光去观察生活,找找生活中哪些事件和可能性有关。

3、机动题:

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
复制