高三语文必考知识点总结大全(三篇)
文件格式:DOCX
时间:2023-04-04 00:00:00    小编:一颗冰栗子

高三语文必考知识点总结大全(三篇)

小编:一颗冰栗子

总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结吧。总结怎么写才能发挥它最大的作用呢?下面是我给大家整理的总结范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

高三语文必考知识点总结篇一

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与p1、p2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

点斜式:

直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示、但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

高三语文必考知识点总结篇二

形如a+bi(a,b∈r)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母c表示。

复数通常用字母z表示,即z=a+bi(a,b∈r),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

(1)复平面、实轴、虚轴:

这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

(1)它的平方等于-1,即i2=-1;

(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

复数与实数、虚数、纯虚数及0的关系:

对于复数a+bi(a、b∈r),当且仅当b=0时,复数a+bi(a、b∈r)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

高三语文必考知识点总结篇三

(2)注意:讨论的时候不要遗忘了的情况。

1、映射:注意

①第一个集合中的元素必须有象;

②一对一,或多对一。

2、函数值域的求法:

①分析法;

②配方法;

③判别式法;

④利用函数单调性;

⑤换元法;

⑥利用均值不等式;

⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);

⑧利用函数有界性;

⑨导数法

3、复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性

(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;

(2)是奇函数;

(3)是偶函数;

(4)奇函数在原点有定义,则;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制