小学数学教学设计
文件夹
手记是一种用来记录、记述和评价个人经历、心情和感受的一种文学形式。在总结中,我们应该提供一些具体的例子和事实来支持我们的观点。掌握了总结的写作技巧,或许你会有更多的收获。
教学目标:
1、使学生经历探索小数加减法计算方法的过程,体会小数加减法与整数加减法在算理上的联系,初步掌握小数加减法的计算方法。
2、使学生进一步增强运用已有知识和经验探索并解决新问题的意识,不断体验成功的乐趣。
教学重点、难点:
掌握小数加减法的计算方法。
教学方法与手段:
使学生经历探索小数加减法计算方法的过程,体会小数加减法与整数加减法在算理上的联系,探索小数加减法的计算方法。
教具学具:多媒体光盘。
教学过程:教师活动。
学生活动。
设计意图。
一、导入。
1、出示例1的情境图。
谈话:这是同学们在文具商店购物的画面。你能从中了解到哪些信息?
学生交流后提问:根据这些信息,你能提出一些用加减法计算的问题吗?
根据学生的回答,相机板书下面的问题及相应的算式:
(1)小明和小丽一共用了多少元?
(2)小明比小丽多用多少元?
(3)小明和小芳一共用了多少元?
(4)小芳比小明少用多少元?
(5)三个人一共用多少元?
2、揭示课题。
谈话:怎样计算小数加减法呢?这就是我们今天要研究的问题。(板书课题:小数加法和减法)。
二、探究。
1、教学例1的第(1)问。
谈话:你能用竖式计算“4.75+3.4”吗?先试一试,再和小组内的同学交流。
讨论:你是怎样计算的?又是怎样想的?
围绕学生采用的算法进行比较,要求学生具体地解释思考过程。
小结:用竖式计算小数加法时,要把两个加数的小数点对齐,然后把相同数位上的数分别相加。
2、教学例1的第(2)问。
小结:通过刚才的学习,你知道了什么?
3、教学“试一试”。
谈话:这里还有两道题,你能用刚才学到的计算方法自己算出结果吗?
学生计算后,再要求说一说是怎样算、怎样想的。然后提出把计算结果化简的要求,让学生说一说化简的结果和依据。
4、总结和归纳。
学生活动,教师参与学生的活动。然后组织机交流。
三、练习。
1、完成“练一练”第1题。
学生独立完成后,让学生说一说计算中需要注意的地方。
2、完成“练一练”第2题。
先让学生通过独立思考找出每道题中的错误,再分别改正,并组织交流。
3、完成练习八第1题。
4、完成练习八第2题。
根据学生完成的情况适当加以点评。
5、完成练习八第3题。
让学生独立列式计算;。
根据题中的数量关系,还可以自己补充问题:问学生你还想到了什么?
四、总结。
通过今天的学习,你知道了什么?有哪些收获?你认为自己今天学得怎么样?
五、延伸。
同学们在开始上课的时候,提出了许多用小数加减法解决的问题,这些问题都很有价值。其中,有些问题我们已经解决,剩下的问题下节课在继续研究。
六、课堂作业。
《补充习题》p。
学生回答。
学生根据条件提出相应的数学问题。
学生口答算式。
学生思考、交流后回答:算式中都用小数。
学生用竖式计算,并在小组内交流。(同时指名板演)。
学生说出自己的想法。
同学间交流自己想法。
学生独立计算,指名板演。
学生交流后明确学生独立计算,并说说自己的想法。
同学们自己想一想,再和小组内的同学交流。
引导学生归纳:小数加减法和整数加减法都要把相同计数单位上的数分别相加、减,都要从低位算起。计算小数加减法时,需要把小数点对齐后再算,最后在得数里对齐横线上的小数点,点上小数点。
学生各自在书上填出得数,并回答。
学生独立完成,
结合线段图学生说说对前3个问题的理解。
学生交流。
问题的提出来自学生本身的思索,这让学生更有兴趣去探索、尝试。
围绕学生采用的算法进行比较,要求学生具体地比较“数位对齐”、“相同数位对齐”和“小数点对齐”,最终让学生明白“小数点对齐”也就是“相同数位对齐”。
这一环节让学生自己尝试解决。教师鼓励分小组相互交流,然后全班交流,进而探讨小数加、减法的基本算理。这样学生在轻松愉悦的氛围中既掌握了知识,同时也培养学生自主探索的精神,引导学生学会学习。
联系以前学过的整数加、减法,沟通新旧知识间的联系,使学生对小数加、减法的笔算方法形成比较完整的认识。
通过一系列的练习,既巩固了本课的相关知识点,又提高了学生灵活计算的能力。
4.75+3.4=8.15(元)4.75-3.4=1.35(元)。
4.754.75。
-3.4-3.4。
8.151.35。
1、依据倍数和因数的含义和已有的乘除法知识,自主探索总结找一个数的倍数和因数的方法.
2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。教学重点:理解因数和倍数的含义.教学难点:自主探索并总结找一个数的倍数和因数的方法.教学过程:
脑筋急转弯:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?
教师说明:人和人之间的关系是相互依存,数和数之间也是相互依存的。揭题:
1、创设情境。
用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。
学生汇报拼法,教师依次展示长方形的拼图,并板书:
4×3=1
26×2=12
12×1=12
教师根据4×3=12揭示:4×3=12
12×1=12吗?
2、深化感知。
(1)你能举出一些算式,说说谁是谁的倍数,谁是谁的因数吗?
教师说明:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
1、设疑。
在刚才的学习中,我们知道了3的倍数有
12、18。除了
12、18还有别的吗?请在纸上写出3的倍数。你能完成得又对又好吗?。学生在书写过程中引发冲突:为什么停下来不写了?有什么困难吗?引导学生讨论后达成共识:加省略号表示写不完。
2、交流。
揭示“有序”,为什么要有序地写倍数呢?全班讨论:“你是怎么写3的倍数的?”。
3×
13×
2 3×
3……
3
3+3
6+3
……
一三得三二三得六三三得九
引导学生讨论得出:用依次×
1、×
2、×3……写出3的倍数。
3、深化:请写出2的倍数,5的倍数。
4、引导观察,发现规律。
小组讨论:观察这三道例子,你有什么发现?全班交流,概括规律。
5、小结:发现这些规律可以更好地帮助我们寻找一个数的倍数。
1、设疑。
刚刚我们学会了找一个数的倍数,接下来我们来找一个数的因数。
请写出36的所有因数,
2、组织讨论。
你是怎么找36的因数的?
( )×( )=36从一道乘法算式中可以找到2个36的因数,6×6=36呢?
36÷( )=( )从一道除法算式中也可以找到2个36的因数。
3、讨论“多”。问:写得完吗?你可以按照什么顺序写?
师动画演示36的因数(从两端往中间写),同时指出:当两个因数越来越接近时,也就快要写完了。
4、巩固深化。
请写出15的因数,16的因数。学生练习后组织评讲。
5、引导观察,发现规律。
问:通过观察这三道例子,你能发现什么规律?
6、小结:写一个数的因数时可以从1和它本身来写,从小到大依次寻找。
1、快乐大转盘
2、猜数游戏。
集体研讨发言稿
这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数和因数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下三个方面谈一点教学体会。
一、设疑迁移,点燃学习的火花。
良好的开头是成功的一半。我采用脑筋急转弯中的一道题作为谈话进入正题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
二、渗透学法,形成学习的技能。
3、依次乘
1、
2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时间,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。
三、活用教材,拓展学习的深度。
教材中安排36÷()=()这一道除法算式来找一个数的因数。我觉得这样的设计可能会带来几点不足,其一:学生感知倍数和因数的概念、寻找一个数的倍数都是借助乘法算式,同样,找一个数的因数也可以利用乘法,让所学的知识形成系统岂不更有利于学生进行有效学习吗?其二:从学情来分析,相对于除法,学生更熟练、更喜欢运用乘法。以学定教,真正做到以人为本。我在教学时引导学生讨论得出:借助()×()=36来寻找一个数的因数。
课尾,我设计了一两个游戏,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对后续的学习进行适当的铺垫。融知识性、趣味性为一体,收到了课虽止意未尽的良好效果。
纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。整节课似行云流水、波澜不惊,但我想学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高的。
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力目标。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
理解求表面积、侧面积的计算方法,并能正确进行计算。
能灵活运用表面积、侧面积的有关知识解决实际问题。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……。
师:我坚信你们一定不会让老师失望的。
师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……。
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程。
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)。
指名学生摸其表面积,并追问:怎样求它的表面积?
生:六个面的面积和就是它的表面积。
师:怎样求圆柱的表面积呢?(学生分组讨论)。
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。
1、圆柱的侧面积。
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高。
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答。
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高。
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
2、圆柱的表面积。
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积。
师生小结:圆柱的表面积=底面积×2﹢侧面积。
3、反馈练习。
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4、实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……。
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。
1.通过学习数据的整理,感知数学在生活中的作用。
2.使学生初步认识条形统计图和统计表,能根据统计图和统计表中的数据提出问题和解决问题。
3.使学生能使用包括“正“字在内的各种方法统计数据,并填写统计表与统计图。
4.培养学生初步的统计能力和实践能力。
1.学会用合适的方法统计,认识统计表、统计图,并根据认识统计表、统计图提出问题和解决问题。
2.选择合适的统计方法记录
教师:彩色水果贴图和头饰(苹果、西瓜、香蕉、草莓),
学生:统计纸一张,统计图两张
一、谈话导入
1.聊天
师:老师想知道大家喜欢吃什么水果
我这里有四种水果(苹果、西瓜、草莓、香蕉)贴到黑板上
你最喜欢吃什么?
生1:苹果;生2:香蕉。
师:谁最喜欢吃苹果?(苹果的头饰)。
师:谁最喜欢吃西瓜?(西瓜的头饰)
草莓、香蕉?
2.站队
下面你喜欢吃什么水果就悄悄到对应小朋友的后面安静站好。
3.数一数,比一比
请最前面的小朋友数一数你这一队喜欢吃这种水果的多少人?
喜欢吃哪种水果的人数最多啊?喜欢吃哪种水果的人数最少?
4.总结揭题
师:刚才我们进行的这个活动,就是统计,今天我们来学习统计。
板书课题:统计。
二、新知探索
1.讨论统计方法
师:李老师还统计了一年级一班小朋友喜欢吃水果的情况,想不想知道?
师:一起来看一下(一个人一个人的'快速出现,如:小明苹果)
师:记住了吗?
喜欢吃苹果的有几人?
师:那你能想个办法记下来吗?
师:小组讨论,教师指导。
生:汇报确定:
用一个对号、画圈、三角等符号代表一个人的喜好,出现一个快速画一个符号,就能记下来。
师:请同位合作,一人看一人记,用你们喜欢的方法在这张纸上记录下来,现在讨论一下,两人谁看谁记,并选择你们喜欢的方法。
1、在具体的活动中,认识11-20各数,能正确地数、认、读、写11-20各数,知道这些数是由1个十和几个一组成的。
2、通过具体的操作活动,培养学生的操作能力和语言表达能力,使学生体验数位的含义,建立数位的概念,并培养合作意识。
3、通过有趣的数学活动,使学生体验数学的趣味性,感受学习数学的快乐。
掌握数的意义和组成。
明确不同数位上数字的含义。
20根小棒、2根橡皮筋、一台计数器。
一、导入。
(1)、比4大,比6小的数是()。
(2)、由7个一组成的数是()。
(3)、10后面的一个数是()。
2、机器猫请你摆出11根小棒,看谁摆的又快又准。同学们,你们给老师出了一个难题,老师一眼望去,看不出来是不是11根,你有什么好办法,让老师一眼就看出来有多少根吗?拿出一根皮筋,借助它来试一试。(学生汇报捆法,说说捆的理由,选出最佳捆法)。
老师把十根捆成一捆的过程,给同学们呈现一下,这节课我们就用捆小棒的方法来学习11—20数(板书:捆小棒)。
二、认识及组成。
1、机器猫想知道哪位同学的反思速度最快,谁能快速读出小棒的数量。
2、一捆小棒是1个十,10根小棒是10个一,一捆小棒里有10根小棒,1个十就是10个一。(板书)记一记,说给同桌听。
3、为了更好的学习,老师今天还请来一位朋友,它是计数器,从右边起第一位是个位,第二位是十位。
11里面有1个十,就在十位上拨一个珠,表示1个十,11里面有1个一,就在个位上拨一个珠,表示1个一。
4、有人说个位上的“1”和十位上的“1”意义是一样的,这种说法对吗?不对(个位上的“1”表示1个一,十位上的“1”表示1个十),谁能再把二个一所表示的不同的意义说给同学们听。
19是由几个十和几个一组成?加法算式?
8、1——10是我们学过的数字,接下来,玩接力游戏,从10数到20。(指到谁,谁接着数,反复两次,分组数)增加难度(跳着数,反复两次)再增加难度(同桌倒着数,全班齐倒数)。
三、巩固。
我们班的同学很出色,机器猫想和大家一起做练习:
1、看图写数(指名)。
2、我说你拨(和机器猫玩,再同桌玩)。
3、看直尺回答问题。
四、联系生活。
在生活中哪些地方见到过11—20各数?请同学们欣赏一组生活中的图片,找出本节课学到的数字。
机器猫和同学们一起度过了一节愉快的数学课,要和同学们说再见了!挥挥手吧!
我们的数学课堂学什么?计算、算理、概念……,是的这些基础数学知识对一个人的数学素质是非常重要的,但它是不是惟一决定性因素呢?是不是影响我们学生以后一生的学习、生活、工作呢?联合国教科文组织数学教育论文专辑中中曾叙述这样的一个典型的例子:我们能确定三角形面积公式一定重要吗?很多人在校外生活中使用这一公式至多不超过一次。
21世纪国际数学教育的根本目标是“问题解决”,要解决我们学生过去、现在、将来所遇到的种种问题,他们所需的不仅仅是知识,而是比知识更重要的数学思想。
数学核心思想,是指在对数学本质的认识中起核心作用的基本数学思想和数学观念。基本数学思想有:符号与数的表示思想、集合思想、对应思想、合理化思想和结构思想等。数学观念主要有推理意识、化归意识、抽象意识和整体意识等。在数学问题解决中,当情境稍有变化时,主体常会感到束手无策,如果有数学核心思想来调控数学方法,则往往可以超越这个特定的情境。摘自《学与教的心理》高等教育出版社。
教学设计是运用现代学习、教学、传播等方面的理论与技术,针对特定的教学对象和教学目标,来分析教学问题、寻找解决方法、评价教学效果以及修改执行方案的系统过程。它是为了达到一定的教学目标,对教什么(课程内容)和怎样教(教学组织、模式选择、媒体选用等)所进行的设计。
数学思想不是孤立存在的,如果说基础知识是躯体的话,那数学思想就是躯体的灵魂。数学活动过程是渗透数学思想的载体,而教学设计则应以数学核心思想的渗透为重要依据。教师在教学设计时,要根据教学内容认真分析本课的数学核心思想,围绕数学核心思想确立教学目标、教学重难点以及突破重难点的方法。
(一)数学核心思想为教学设计的路标
美国学者马杰认为,教学设计由三个基本问题组成:首先是“我要去哪?”即制定教学目标;做为一个教育者要把学生带到哪里去,是至关重要的。数学核心思想的确立,教育者会在教学设计中,把这一思想蕴含到教学教学活动之中去,有了灵魂的教学活动会激发学生思维的火花。
例如二年级下册《生活中的大数》数学核心思想:十进制,位值制
历史上,无论美国、加拿大,还是在世界上别的国家,数都被认为是数学课程的基石。这学前至十年级的数学都扎根在这块基石上。代数中的解方程原理和数系中的结构特征一致,几何和度量特性是用数字描述的。(摘自美国数学教育的原则和标准)全国数学教师理事会著人民教育出版社。)
根据这一数学核心思想设计这样一组教学活动:
1、通过数据模型建立“千”和“万”的概念。
出示了一个由一千个小正方体组成的大正方体,让学生先猜一猜,后分层数一数一共有多少个小正方体?接着数10个一千个小正方体,认识10个一千是一万,再通过对比一万和一千、一千和一体会1万和1千。通过课件回忆数的过程,发现十进制,从而告诉学生十进制是中国人发明的,现在全世界都在使用,激发学生的爱国情感。
2、通过“测量长度”数一些数量较大实物的活动让学生进一步体会“十进制”从而培养学生的数感。
在练习中让学生数大约一万个豆子,这时孩子肯定不一个一个数,也不会十个十个的数,(学生认为这样比较麻烦)。这时出示二百个豆子,并把它放在一个透明的杯子里,学生受到启发用,量出二百个豆子的高度,然后画出4个同样的高度,迅速的数出大约一千个豆子,同时可以想到用同样的方法能数出一万个豆子。
3、通过用10个一百厘米展示一千厘米有多长,培养学生的空间观念。
学生通过用10个一百厘米展示一千厘米有多长,利用十进制建立长度之间的关系,之后让学生想一想一万厘米有多长?一万米有多长?为后面学习千米打下了良好的基础,同时培养了学生的空间感。
1、加减法的意义。
2、10以内数的加减运算。
3、连加、连减和加减混合运算。
4、解决有关的简单实际问题。
1、经历自主探索算法并与同伴合作交流计算方法的过程。
2、在具体情境中,通过操作活动,初步理解加减法的意
义,探索并掌握10以内数加减法的计算方法。
3、能正确计算得数是10以内数的加与减及连加、连减和
加减混合,并能解决生活中有关的简单实际问题。
1、能正确、熟练地进行10以内数的加减运算。
2、能正确理解加与减的意义,并能运用加与减解决简单
的`实际问题。
1、在具体情境中,理解加与减的意义。
2、通过操作、画示意图、演示等多种方式,探索和交流
算法。
3、注重数的认识和运算意义有机结合,促进学生对数的
认识。
教具:课件,实物投影仪,计数器等
学具:各种图形,棋子等。
课题:一共有多少
(共2课时,第1课时)
1.在具体的情境活动中,让学生体验加法的含义,并学会5以内
数的加法.
2.初步培养学生提出问题,解决问题的能力。
1.知道加法的含义,并能正确地读出算式。
2.会计算5以内的加法。
鸡兔同笼问题设置在数学广角中,其教学与常规课有所不同。区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,培养学生的逻辑推理能力,为学生的终身发展奠定基础。
《数学用书》中说道:“数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。”因此,鸡兔同笼问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
(1)教材首先通过“鸡兔同笼”这一问题,激发学生解答我国古代著名数学问题的兴趣。
(2)注重体现解决“鸡兔同笼”问题的不同思路和方法。
(3)让学生进一步体会到这类问题在日常生活中的应用。
四年级的学生,他们已具备解决鸡兔同笼问题的能力,能够理解此类问题题意,初步接触多种解题策略,会一些基本的解决数学问题的方法。
1、知识与技能目标:通过学习,让学生掌握用图示法、假设法、列方程法等解决"鸡兔同笼"问题,让学生体验解决问题的多样性,并能用这些方法解决生活中类似"鸡兔同笼"的问题。感受古代数学问题的趣味性和解法的巧妙性。
2、过程与方法目标:学会在学习中进行尝试、比较、分析,培养解决问题的能力,并在解决问题的过程中培养学生的合作意识和逻辑推理能力。
3、情感与价值目标:体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,激发学生学数学、用数学的兴趣;感受古代数学问题的趣味性,了解我国古代数学研究成果。
4、数学思考与问题解决:经历解决问题的过程,体验分析解决问题的方法和途经。
教学重点:尝试用不同的方法解决"鸡兔同笼"问题。
教学难点:在解决问题的过程中培养学生的逻辑推理能力。
教学内容:人教版小学四年级数学下册第103—105页。
创设游戏,提出问题。
师:同学们,今天让我们一起来学习中国古代三大数学趣味题之一,“鸡兔同笼”。下面,先让我们来玩个接龙游戏,我说动物的数量,你们对应说出他们的头的个数和脚的只数。如:
师:一只鸡。
生:一只鸡,一个头,两只脚。
师:一只鸡和一只兔。
生:一只鸡和一只兔,两个头,6只脚。
……。
师:那反过来如果有5个头,16只脚,该有几只鸡几只兔呢?
……。
师:下面,我们来看看怎样解决这类问题的。
设计意图:创设游戏情境,很自然地引入课题。
出示问题,学习模式。
已知:鸡和兔共有5个头,16只脚。
问题:鸡和兔各有几只?
画图法:
结合教材,生自主用画图法理解完成。
列表法(枚举法):
一一列举出鸡有0到5只及兔有5到0只时的脚数。
文字说明:
1.画图法:先画出5个头和16只脚,然后先给每个头配2只脚,剩下的脚再两只两只地加到每个头上,分配完后,4只脚的是兔,2只脚的是鸡。
2.列表法:假设4只鸡,1只兔,那么共有12只脚,与题目条件不符;假设3只鸡,2只兔,那么共有14只脚,也不符合条件;假设3只鸡,2只兔,那么共有16只脚,刚好符合题目条件。
设计意图:数形结合,以画促思,更好地帮助学生理解题意,同时激发学生学习兴趣。
例题讲解。
那现在我把数量增加一点点,你们再来算一下?(出示例1)。
1.尝试与猜想(分小组合作,活动后汇报、交流)。
四人小组,仿照引例中的按照表格模式,探讨方法,并把讨论结果综合在表格里,组长负责收集和整理相关信息,并推荐一位组员上台展示成果并分享方法。
画图法:
8个头,26只脚。
兔有()只,鸡有()只。
列表法(枚举法):
兔有()只,鸡有()只。
经过同学们的小组交流,合作探讨,基本解决了这个问题,而且你们善于观察和总结规律,老师为你们感到高兴。以上的方法属于一种猜测和推算的过程,这些方法在对于一些数字简单的题目还是可行的,但是如果数字较大,以上两种方法操作起来就有些难度了,我们能不能用列式的方法来解决这个问题呢?下面我们一起来探讨一下。
2.假设与探究。
假设全是鸡。
(小组合作探究,师生再交流)。
生:我们是这样想的:兔子都用2只前脚捂住耳朵,用2只后脚站了起来,这时每一个头就对应着有2只脚站在地上(即可假设8个头都是鸡头),此时站在地上的脚的个数是8×2=16只。
师:算式里的8表示什么?2又表示什么?结果的16只脚是什么的脚?
生:8表示“假设8个头都是鸡的头”,2表示“每只鸡有2只脚”,16只脚是站在地上的脚。而之前数有26只脚,少了26-16=10只脚,这10只脚是兔子捂耳朵的前脚,而每只兔子有2只前脚,所以兔子的只数是:10÷2=5只,鸡的个数是:8-5=3只。
师:“10÷2=5”式中的10表示什么?2表示什么?
生:10表示兔子抬起捂耳朵的前脚,2表示每只兔子有2只前脚,
10÷2表示兔子的数量。
师板书:假设全是鸡:
脚的总数:8×2=16(只脚)。
一只兔比一只鸡多的脚数:4-2=2(只脚)。
兔子:10÷2=5(只)。
鸡:8-5=3(只)。
师:以上的方法就是假设法,假设全是鸡,先算出脚的假设总数,然后对比实际总数,再用少了的脚数除以2(4-2=2)就可以算出兔子的数量了。
假设全是兔。
(小组合作探究,师生再交流)。
生2:我们是这样想的:鸡都把翅膀撑到地上当“脚”了(即可假设8个头都是兔头),这时地上的脚的总数是8×4=32只,但实际上只有26只脚,多出来的“脚”32-26=6只,多出来的这6只“脚”实际上是鸡的翅膀来的,每只鸡有2个翅膀,所以鸡的个数有6÷2=3(只),兔的个数有8-3=5(只)。
师板书:假设全是兔:
脚的总数:8×4=32(只脚)。
一只兔比一只鸡多的脚数:4-2=2(只脚)。
鸡:6÷2=3(只)。
兔子:8-3=5(只)。
师:同学们说得太好了!我们可以把刚才的这两种解决问题的方法称为“假设法”——假设怎么样,然后怎么样。经过这两道题的观察和分析,我们不难发现,假设全是鸡,就会先求出兔的只数;假设全是兔,就会先求出鸡的只数。
设计意图:拟人化的比喻,让学生兴趣盎然。
渗透文化,激发情感。
师:同学们,让我们闭上眼睛穿越时空回到1500年前。在一间学堂里,一位先生拿着一本数学名著《孙子算经》,摇头晃脑地读着:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”同学们,你们能用我们刚才学习的几种方法帮帮古代的学生们吗?谁来先翻译一下这个古代数学问题的意思?然后,请各位同学用刚才学过的方法解答这个问题。
(独立完成后让学生交流,并进行板书汇报、)。
师:对了,这道题的意思就是:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?同学们都做得很好,板书的两位同学做得更加精彩。
试想:古代的人又是怎样解决这类问题的呢?同学们,还有不同的解决方法吗?
设计意图:渗透古代数学思想,适时适地进行思想教育,创设课堂数学文化氛围。
畅谈收获。
师:今天的课堂学习有趣吗?大家有哪些收获?
生1:……。
生2:……。
……。
师:今天,我们通过了小组合作、自主探究。学习了用画图、列表和假设的方法来解决“鸡兔同笼”的问题,希望你们能用今天学到的方法去解决实际生活中的数学问题。
巩固解决“鸡兔同笼”问题的基本方法,了解古时候的解法,使学生对我国的古代文化产生浓厚的兴趣,最后的小结梳理一下几种方法,引导学生反思学过的方法,为以后的学习奠定基础。
在上这节课之前,我已经预想到了学生理解方面可能会存在偏差,同课室同事谈到往届学生对鸡兔同笼这类问题的解决途径很是模糊。我有意识细琢磨了一下课堂课堂会出现的情况。于是,课堂上先游戏引导,再通过画图、列表法的展示,学生们一下子眼界开阔,思路瞬间明朗化,直到后面的假设法的出现,学生对鸡兔同笼问题都不难理解了。假设法作为一种基本方法,给学生讲通讲透,能够做到举一反三解决此类问题就足够的。本计划课堂上渗透用方程方法解决问题,由于四年级学生未接触方程和课堂时间关系,未提及这一方法,希望学生们在后续的学习过程中逐步拓展更多的解决途经。
教学目标:
1、学生在联系生活实际和动手操作的过程中认识梯形,发现梯形的基本特征,认识梯形的高。
2、学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个梯形,会在方格纸上画梯形,能正确判断一个平面图形是不是梯形,能测量或画出梯形的高。
3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。
教学重点:
经历梯形的认识过程,了解梯形的特征。
教学难点:
建立厅性的高的概念,画梯形的高。
教学准备:
配套教材、直尺、三角尺等。
教学流程:
一、生活导入。
1、出示例1的图片,你能在这些生活场景中找到以前学过的平面图形吗?
(重点可让学生上台指一指梯形)。
2、你能说说生活中还有哪些地方能看到梯形吗?
3、今天我们继续研究梯形。你还记得我们昨天是怎样研究平行四边形的吗?
根据学生回忆板书:
(1)探究特点。
(2)认识高、底。
(3)多种练习。
有了这些研究平行四边形的经验,你想自己来进行研究活动吗?在小组里讨论一下,你们准备开展哪些活动来完成(1)和(2)。
老师的友情提醒:研究梯形时注意和平行四边形的联系与区别,将使你事半功倍。
二、小组活动。
(一)探究特点。
1、展示小组内制作的梯形,介绍使用的材料和方法。
2、归纳梯形的特点:梯形只有一组对边平行。
(二)认识高、底。
1、介绍小组内的研究成果。
2、在此基础上指导看书自学:
量出互相平行的一组对边间的距离,这就是梯形的高。这样的高有多少条?为什么?与平行四边形不同的是,梯形各部分有自己的名称。说说什么是上底、下底、腰、等腰梯形。
3、试一试:指一指高垂直于哪条边,量出每个梯形的上底、下底和高各是多少厘米。
4、说明:第二个梯形是直角梯形。在直角梯形中有几个直角?
三、练习提高。
想想做做1-5。
四、课堂总结。
通过这节课你有什么收获?还有哪些疑问?同桌间说说看。
1、巩固平行四边形、三角形、梯形、圆的面积公式及推导过程。2、弄清各图形面积之间的联系,熟练掌握面积公式。3、灵活运用割补法、拼全法解决组合图形的面积计算问题。4、在知识的运用与迁移中让学生感受到数学的乐趣。教学方法:
探究式学习、闯关式练习。
各种平面图形和组合图形卡片。
师生互问候并提出本课时教学期望及要求——智勇闯三关。
1、出示各种平面图形,请同学说说用字母表示的面积公式。
2、说说平行四边形、三角形的面积推导过程。
(渗透各图形的面积计算过程中切割法和移补法运用的数学思想)。
1、出示图形。
ab。
2、解析题目。
a图:割补成一个长方形和一个圆。(长方形面积加上圆的面积)。
b图;切割成一个正方形和半个圆。(正方形的面积加上半个圆的面积)3、出示数据,学生任选一题进行计算。4、做好的自行上台演板,再全班交流、评析。
5、小结闯关情况,体验闯关成功的喜悦,激发闯关斗志。
1、出示图形(求阴影部分的面积)。
ab。
2、解析题目。
a图:割补成一个梯形和一个三角形(梯形面积减去三角形面积)b图:移补成一个长方形。(长和宽都要减去空白处的宽度)。
3、出示数据(a图梯形上底20㎝,下底40㎝),学生任选一题进行计算。
4、做好的自行上台演板,再全班交流、评析。
5、小结闯关情况及闯关成功诀窍,体验闯关成功的喜悦同时充分准备应对下一关的挑战。
2、解析题目,并出示下图。
a图用三角形的面积减去半个圆的面积。b图用正方形的面积减去一个圆的面积。
3、出示数据(a图三角形的底是20㎝,高是17㎝;b图正方形的边长是40dm),学生任选一题进行计算。
4、指名叫刚才想象出的同学上台演板,再全班交流、评析。
5、小结闯关情况,体验闯关成功的喜悦,鼓励学生大胆想象,学会运用所学知识解决数学问题。
全班归纳闯关心得,并以此激发学生的学习数学的热情及优化学生的数学思想。
因为我运用了学生喜闻乐见的闯关形式开展本节练习课,故而课堂气氛活跃,学生学习积极性高。为了让全体学生都参与其中且体验到成功的喜悦之情,我设计了由易到难的三关,让学生运用所学知识经历一个推进、巩固、深化的过程。而且都是全班先交流解题思路,再任选一题进行计算,如此时间上也易掌控,又照顾到了那些学困生。整堂课下来,统计后发现有四分之三以上的同学闯过了三关。
【教学内容】:
版本、章、节。
【教材分析】:
1.课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。
2.本节核心内容的功能和价值(为什么学本节内容),【学情分析】:
1.教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。
2.学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线。
3.学生认知障碍点:学生形成本节课知识时最主要的障碍点。
【设计思路】:
现本节课的教法学法及体现的理念支撑。
【教学目标】:
教学目标的确定应注意按照新课程的三维目标体系进行分析。
【教学过程】:
教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要教学环节、教师活动、学生活动、设计意图很清楚地再现。
板书设计:需要一直留在黑板上主板书。
学生学习活动评价设计:设计评价方案,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。另外,也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价。
【教学反思】:
教学反思可以从以下几个方面思考,不必面面俱到:
1.反思在备课过程中对教材内容、教学理论、学习方法的认知变化。
2.反思教学设计的落实情况,学生在教学过程中的问题,出现问题的原因是什么,如何解决等,避免空谈出现的问题而不思考出现的原因,也不思考解决方案。
3.对教学设计中精心设计的教学环节,尤其是对以前教学方式进行的改进,通过设计教学反馈,实际的改进效果如何。
1、通过设计“跑向北京”的象征性长跑的活动方案,累计数学活动经验,感受数学在日常生活中的应用。
2、经历设计活动方案的过程,提高手机数据与处理数据的能力。
3、在收集数据、设计方案、交流等活动中,学会合理地评价活动过程和设计方案等,发展自我反思能力。
1、利用数的计算、收集和处理等知识进行综合运用,解决一些实际问题。
2、培养学生用数学的眼光观察生活、解决问题的能力、
一、谈话导入。
师:同学们在愉快的学习中,保证良好的锻炼是非常必要的,下面我们就来研究一下“象征性”长跑问题。
二、探究活动。
1、确定主题。
2、要设计长跑方案,需要解决哪些问题?
(1)调查学校所在城市到北京的距离大约有多少千米?
(2)调查学校所在城市到北京途径的主要城市和城市之间的路程。
(3)确定每人每天跑的路程,如果全班用接力方式跑完全程,怎样设计方案?
(4)向大家征集活动主题,确定一个最受欢迎的。
三、知识的运用。
1、分组收集数据,根据数据设计象征性长跑的方案。
2、小组合作,完成设计方案。
四、总结与布置作业。
这节课我们设计了一个象征性长跑方案,同学们真了不起!
长跑,教学,日常生活,数学好玩,活动方案。
本单元教学加法交换律、结合律,乘法交换律、结合律。在学生掌握了四则计算和混合运算顺序的基础上,进一步教学运算律,有利于学生更好地理解运算,掌握运算技巧,提高计算能力。
本节教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。
学情分析。
学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教师应有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。
教学目标。
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点和难点。
重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。
1、使学生理解掌握长方形面积计算公式,并且会运用公式进行计算。让学生通过实践操作、观察、推理等活动,发现长方形的长、宽与面积之间的关系。
2、在学习过程中让学生充分感受到数学与生活的联系,在教与学的活动中,让学生体验实践探索、观察发现、拓展应用的学习过程,掌握探讨知识的一般方法。初步培养学生的观察、操作及归纳推理能力。
3、通过数学活动培养学生对数学的情感,感受家的温馨。
一、创设情境引入新课。
师:老师给同学们带来一首好听的歌曲《吉祥三宝》(点击播放)。
师:喜欢听这首歌吗?就像歌里唱到的,爸爸、妈妈和我们就是吉祥如意的一家!老师也有一个幸福的家,这是老师住的楼房,一起看看吧!(放课件:小区楼房)这是我们家的客厅、厨房、餐厅、卧室(出示情境图)。
师:从图中你知道了哪些数学信息?给居者新信息你能提出什么问题?
生1:小卧室的面积是多少?
生2:餐厅的面积是多少?
(出示房间图)。
师:怎样求小卧室的面积?
生1:小卧室地面的形状是长方形。
生2:我们借助学具来研究。
二、合作实践探究新知。
问题一:怎样求长方形的面积呢?小组合作交流完成学案。
学生展示。
生1铺一铺:我用1平方厘米的正方形把长方形纸片全部铺满,共用了20个。它的面积是20平方厘米。
生2摆一摆:我沿长摆了5个,沿宽摆了4个,就说明可一摆四行,共用了54=20个正方形,知道它的面积是20平方厘米。
生3量一量:我量出长是5厘米,宽是4厘米,就能想出沿长能摆5个,沿宽能摆4个,共用了54=20个正方形,知道它的面积是20平方厘米。
问题二:你会求下面长方形的'面吗?
师:回顾刚才的探索过程,你有什么发现?
生1:我发现长方形的面积与它的长和宽有关。
生2:我发现长方形的面积等于长乘宽。
总结:长方形的面积=长宽。
小卧室的面积:54=20(平方米)。
答:小卧室的面积是20平方米。
问题三:餐厅的面积是多少?小组合作,展示交流。
生1:餐厅地面的形状是正方形的。
生2:长方型的的长和宽相等时,就是正方形了。
生3:长方形的面积等于长乘宽,正方形的面积等于边长乘边长。
总结:正方形的面积=边长边长。
餐厅面积:44=16(平方米)。
答:餐厅的面积是16平方米。
三、自主练习。
师:有了这个计算方法,我们就可以解决生活中、家庭中的许多问题。(出示题目)。
师:爸爸、妈妈看到这张充满祝福、充满收获的贺卡,一定会很高兴的!在这里,老师也祝同学们学习进步!(放歌曲《吉祥三宝》)这节课就上到这儿,下课。
1、使学生初步学会用"替换"的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学生在对解决实际问题的过程中不断反思,感受"替换"策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
一、情境导入。
同学们,早上喜欢和牛奶吗?和牛奶有益身体健康。
我女儿在家也喜欢喝牛奶,每次早晨喝一小杯(出示一小杯)。我早晨每次喝一大杯(出示一小杯)。大杯中的牛奶大约是小杯牛奶的2倍。
出示1大杯和2小杯,问1大杯可以够我和几次?2小杯可以够我女儿喝几次?
1大杯和2小杯都给我喝,可以喝几次?
1大杯和2小杯都给我女儿喝,可以喝几次?
指名汇报,说说是怎样想的?
说明:刚才想的过程其实就是替换的策略。
揭示课题:用替换的策略解决实际问题。
二、自主探索。
思考:你能解决吗?为什么?(使学生联想到都是大杯或者都是小杯比较容易解决;或者告诉大杯容量与小杯容量的关系。)。
说说所增加的条件,你是怎样理解的?
思考,你准备怎样解决?先独立思考,然后小组内交流想法。
3、全班交流,重点让学生说明怎样替换,替换之后是什么杯子,总量是多少?
使学生感悟到无论怎样替换之后的果汁总量是不变的'。
(根据学生的回答,以课件演示替换的过程)。
思考,为什么要把1大杯替换成3小杯,或者把3小杯替换成1大杯?(感受替换的依据)。
4、学生列式解决。
指名汇报,注重结合替换的思路,理解算式。
师:像这样的实际问题,我们用替换的策略进行解决,是否正确呢?
学生提出检验的方法,并阅读书上的介绍,然后进行检验。
5、小结用替换的策略解决实际问题的过程,加深对解题思路的理解。
6、体现价值。
教师介绍用方程解答的方法,还可以请学生说说不用替换的策略,还可以怎样解决。然后进行比较,使学生深深感受到策略的价值。
三、完成练习的第1题。
1、在题中用图表示替换的过程,然后解决问题,并检验。
2、汇报交流,将学生的作品在实物展示台上展示。注意体现学生可能出现的不同情况,(有可能出现线段图)。
3、结合图说出算式。
4、这个题目还有不同的替换吗?为什么?使学生认识到具体情况具体对待。
四、指导练一练。
1、读题,尝试解答,教师巡视了解。
2、练一练与例题相比有难度,因此让学生在指导下完成,可以用优秀生的思路来提示其他学生。
3、重视图的作用,以图来帮助理解。
五、思考。
1、本课应该以策略的价值体现为主,还是应该以替换的依据为主?感觉难以合理安排。
2、课堂教学时,忽视了学生在替换过程中语言的准确表达。如:用什么替换什么,或者把什么替换成什么。在数学中语言应该是规范、到位的。
2025年小学数学教学设计(优质15篇)
文件夹