最新分数再认识教学方法大全
文件夹
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
(1)知识与技能:结合具体的情境与直观操作,体验分数产生的实际背景,进一步理解分数,能正确用分数描述图形或简单的生活现象。
(2)过程与方法:结合具体的情境,体会“整体”与“部分”的关系,感受分数的相对性。
(3)情感态度价值观:能积极参与操作活动,主动地观察、操作、分析和推理,体验数学问题的探索性与挑战性。
教学重点:
根据新课程标准中的教学内容和学生的认知能力,我将本节课的教学重点定为体会一个分数对应的“整体”不同,所表示的具体数量也不相同深化对分数本质的理解。突出分数意义的建构,使学生充分体会“整体”与“部分”的关系,深化对分数本质的理解。
教学难点:
结合具体情境,体会“整体”与“部分”的关系,感受分数的相对性。
教学学情:
对于分数而言,学生是在三年级下册教材“分一分(一)” 中,结合具体情境和直观操作,体验了分数产生的过程,初步理解了分数的意义,能认、读、写简单的分数;在“分一分(二)”中学生初步感知了“整体”与“部分”的关系,能初步运用分数表示一些事物,解决一些简单的实际问题。本单元在此基础上引导学生进一步认识和理解分数。这里的“再认识”已经很明确的告诉我们这里学习的分数知识与原来学习的分数知识是有区别的:一是在具体的情景中体会“标准”不同,分数所表示的意义也不同;二是结合具体的情景进一步理解“整体”与“部分”的关系。由于学生是在三年级学习的分数初步知识――相隔时间较长,加之这里学习的分数意义范畴的拓展――概念比较抽象,因此教师必须要做好新旧知识的衔接,让学生充分的感知。《分数的再认识》是在三年级下学期,学生已经结合情境和直观操作,初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分基础上进行教学的。其次,五年级的学生求知的*和能力,好奇心都有所增强,对新鲜事物开始思考、追求、探索。但是形象思维占主导地位,需要动手操作,理解知识需要具体的事物作支持。
教法学法:
根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,在教学活动中,尽可能多地为学生创设独立思考、动手操作、自主探究的时间和空间,加之多媒体课件的恰当介入,让学生有所体验、有所感悟、有所发现,目的在于鼓励学生积极主动地去参与探索分数知识的全过程,通过分一分、说一说、画一画,从而经历知识的形成过程,深刻、灵活、扎实地掌握知识,完成知识的主动建构,在获得积极的情感体验的同时形成智慧,着力培养学生的主动参与及创新意识,培养学生的实践能力及创新精神。教学中,我将通过创设情境,引发学生学习数学的兴趣和积极思维的动机,引导学生主动地探索。主动探索、合作交流是学生学习数学的重要方式。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。
教学过程:
一、师生互动,复习导入。
导入:同学们,听指令做动作,知道吗?准备好了没有?女生起立,男生坐正,全班起立,所有同学坐正。下面听问题回答,准备好了没有?全班有多少人?女生有多少人?男生有多少人?女生的人数占全班人数的几分之几?男生人数占全班人数的几分之几?男生人数占女生人数的几分之几?谁能像老师这样来提问?通过这样的师生互动的方式来复习分数,从而来导入新课,这样加深我们对分数的认识,今天这节课我们就继续来学习分数。板书课题:分数的再认识。
二、互动探究,学习新知。
活动一:拿一拿。
首先让学生拿出自己所带笔的1/2,让同学之间看看,指名说说你是怎样拿的。然后老师问:为什么都是拿了所带笔的1/2却支数不一样呢?同桌说一说。让学生体会整体与部分的关系,理解分数的相对性。
设计意图:通过拿笔的活动,让学生体会整体与部分的关系,理解分数的相对性。同时,体现了学生的主题地位以及教师的主导作用。通过动手操作,让学生对分数有更深的了解。
活动二:涂一涂。
老师将准备好的两根纸条请两名同学比赛涂它们的1/3,看谁涂得快?为什么快?猜猜看?接着露出两根纸条的1/3,将其它的部分藏起来,问学生你有什么发现?你还想说什么?师小结:看来都是纸条的1/3,但是两根纸条的长度不一样,所以它们的1/3也不一样。
设计意图:这部分内容主要是让学生通过比较两本书的1/3不同,我把教材进行了小小的处理,改成了涂一涂,猜一猜,说一说这一系列的活动让学生认识到:1/3对应的整体相同,表示的具体数量也相同。1/3对应的整体不同,表示的具体数量也不同。使学生进一步认识到:任何一个分数对应的整体相同,表示的具体数量也相同。对应的整体不同,表示的具体数量也不同。
三、运用新知,巩固拓展。
活动三:猜一猜。
师:我拿出了我全部书的1/2,猜一猜我一共有多少本书?把你的想法在纸上画一画,与同桌交流你的想法。老师巡视,指名把不同的画法画在黑板上。然后师问:谁愿意把自己的想法分享给大家?指名针对黑板上的图谈谈自己的想法。师:我拿出了我全部书的1/3,猜一猜我一共有多少本书?我拿出了我全部书的1/4呢?用同样的方法学生很容易理解并快速找到答案。
设计意图:这时的活动难度加大了,是让学生知道了部分,让学生猜整体是多少,在画一画,猜一猜,说一说中进一步理解体会整体与部分的关系,理解分数的相对性。
四、练习反馈,发展能力。
1.画一画。
给出一个图形1/4小正方形,让学生画,无论如何画,只要是整个图形的1/4是一个小正方形既可。教师巡视,指名把不同的画法画在黑板上,然后再看书中小明、小林和小伟的画法,看来这样的图形的画法有很多种。
设计意图:教师通过这样的学习活动,既有利于加深学生对分数整体与部分关系的理解,又有利于发展学生的空间想象能力。
2.、涂一涂。(练一练第2题重点体现涂法的多样性。)
3、辩一辩
为帮助四川汶川地震灾民重建家园,小明捐了自己零花钱总数的1/4 ,小芳捐了自己零花钱总数的3/4。小芳捐的钱一定比小明捐的多吗?请说明理由。
设计意图:利用层层深入的巩固练习,引导学生对分数进行充分的再认识,通过1题的练习,在加深学生对分数“整体”与“部分”关系的理解时,进行逆向思维练习,提高学生从部分到整体的意识,又有助于学生的空间想象能力的发展。第2题通过用分数表示涂色部分,再一次加深对分数意义的理解;第3题是利用生活中的情境,让学生初步体会分数整体与部分的辨证关系:同一数量所对应整体不同,所表示的分数也不同;分数不同,整体不同,所对应的数量无法比较。在练习时,需要充分调动学生的积极性,让每个学生都参与到学习中来。
五、知识延伸,激发爱国。
你知道吗?
分数的产生经历了一个漫长的过程。古埃及在3700多年前的“莱茵德纸草书”中就有关于分数的记载。我国使用分数的时间也很早,2500多年前春秋战国时期的著作里,就有许多有关分数及其应用的记载。
设计意图:让学生从阅读中了解分数的来历,激发学生的爱国热情。
我们常说“授之以鱼,不如授之以渔”。这节课我不仅注重了知识的教学,同时也注意了学习方法的教学。让学生在经历猜测、验证、总结的过程中解决问题,体现解决问题的方法。
六、畅谈收获,课堂小结。
这节课你对分数又有了什么新的认识?这些知识可以解决生活中的那些问题,学以致用。
七、作业布置,课外学习。
在布置作业时,我设计了有层次的习题,分为必做题与选做题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”的基本教学理念。
板书设计:
今天我说课的内容是:新世纪小学数学五年级上册第三单元“分数的再认识”的第一课时。在三年级下册教材中,学生已结合情境和直观操作,体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义。本节课在此基础上,要进一步引导学生认识和理解分数,为后面进一步学习、运用分数知识做好铺垫。
本节课的课题是《分数的再认识》,一个“再”字,就明确的告诉我们:这节课所学习的分数知识与三年级所学的相比,是有深度的:一方面表现在,要让学生在具体的情境中进一步认识、理解分数的意义;另一方面表现在,要结合具体的情境,让学生体会“整体”与“部分”的关系。
在交流研讨中,我逐渐明白:“再认识”应该有两方面的含义,一是分数的意义,二是整体与部分的关系。于是在第二次的试讲中,我这样安排“拿铅笔” 的环节:先让三位同学想一想:准备怎么拿?然后学生“拿铅笔”,其他学生提出疑问,全班讨论,最后验证汇报、得出结论。这样设计,似乎也完成了教材的安排,然而在网上研讨中,众多参与老师对“教师拿铅笔学生看”进行了质疑,并给出了好的建议。比如风景老师提出:可以让每个学生都参与“拿”的活动,并布置“比较”和“思考”的活动,然后集中整理。武秀华老师提出:可以把学生分成小组,让每个小组的学生都来拿,这样会使更多学生进行感知。
的确,要让学生理解分数意义,体会整体与部分的关系,3个学生岂能代表全部?结合我们班大班额的实际情况,我考虑再三,决定将全班同学分成8个小组进行“拿铅笔”活动。这样一来,让每一位学生都能在具体情境中,体会“整体不同,同一个分数所对应的数量也不同”,从而体验数学知识形成的全过程。
到此似乎已经很完美了。然而,在网络研讨中,有老师又给出了一个建议:在大家分小组动手拿铅笔之前,是否应该增加一个“猜一猜”的环节?即“先让学生猜一猜每个小组拿出的铅笔支数可能会怎样”,这样,与后面“提出问题”的环节就能够起到相辅相成的作用,也为后面的“小组讨论、验证汇报” 起到激发学生认知冲突的作用。
这个“猜”的过程,看似轻描淡写,但却意味深长。在又一次的试讲中,这种认知冲突的确有效的激发了学生的学习欲望,与最初设计相比,更充分地利用了教材主题图,令其更加饱满。
除此之外,“画一画”环节的设计过程也使我对“再认识”这个问题的理解更加全面。起初,我只觉得“再认识”只要认识到“不同整体,相同分数所表示的数量不同”就够了,因为“拿铅笔”与“说一说”这两个活动已经很好的解决了这个问题。所以,我当时就把“画一画”这个环节放到了练习部分。
在网络研讨中,风景老师对此环节的设计,提出了疑问:教材中的画一画的功能还请胡老师继续思考,在教学中它应该在什么位置?风景老师的问题,引发了我对“再认识”的进一步思考。此前我的理解仅仅停留在从整体到部分,欠缺了从部分到整体这一思维过程。而“画一画”环节,就是让学生借助直观图形,体会从部分到整体。有了这种认识,我便在第四稿中把“画一画”环节放置在“说一说”之后,这样,就使学生对分数有了全面的理解。
以上介绍,只是反映我自参加网络研讨以来,在整个研讨过程中,我对教材理解的不断深入、教学设计逐步完善的点滴。感谢本次活动为我们搭建了一个极好的交流平台,感谢在本次活动中给予我帮助的所有老师!希望今后这样的活动能多多益善。
北师大小学数学五上《分数》单元第一课时
教学目标:
1.合具体的情境,进一步体会"整体"与"部分"的关系.
3,通过学生参与具体操作活动,体验数学思考的教程与乐趣.
教学重,难点:
体会一个分数对应的"整体"不同,所表示的具体数量也不同.
教学过程 :
复习与引入:
出示:
师:请用一个数分别来表示图中的涂色部分
生:1/2, 1/2,1/4
师:请你说一说1/2表示什么意思
生:把一个整体平均分成2份,其中的一份是这个整体的1/2
师:分数3/4表示什么意思
师:这个整体不仅可以是一个物体,也可以是表示一堆物体.
师:这是两张同样大小的长方形纸,这两个1/2相等吗
生:相等(板书:1/2=1/2)
二,取珠子,比多少
1.取1/2
生1:从a盒子中取出了3个
生2:从b盒子中取出了4个
师:同样是取了1/2,为什么会不一样呢
(同桌互相议论)
生3:ab两个盒子中的珠子的数量不一样多,所以拿出的1/2不一样多
师:猜一猜,哪个盒子中的珠子数量多一些 为什么
生4:b盒子多一些,因为取出来的多一些,总体也就多一些
师:每个盒子各有多少个 怎么知道的
生5:a盒子有6个,b盒子有8个.a盒有2个3,,b盒有2个4.
生6:各放入8个
生7:各放入6个
师:也就是放各自对应的整体相同.
2.练习:
如果李老师与小明看的书交换,还是各看了1/3,谁看得多 为什么
3.比大小,放珠子
师:我们知道,1/4小于3/4
学生讨论
一组同学商量,到前台操作展示过程
同桌甲:从a盒中放入12个,从b盒中放入4个
同桌乙:从a盒中放入16个,从b盒中放入4个
生:我发现a盒中放入的珠子要比b盒中的多才行.
学生讨论操作
生:我发现只要a盒中放入的珠子是b盒中的3倍,就相等
师:这是为什么
生:因为b盒中取的份数是a盒的3倍
三,分析与讨论
生1:不能比
生2:1/4小于3/4
四.练习:
1.p34画一画:
一个图形的1/4是 ,这个图形什么
2.填空:
一筐苹果的1/5是1个苹果,这筐苹果共个
一筐苹果的1/6是1个苹果,这筐苹果的2/6是个
一筐苹果的1/2是2个苹果,这筐苹果的1/4是个
一堆苹果的2/5是400千克,这堆苹果共千克.
3,p35:小明捐了零花钱的1/4,小芳捐了零花钱的3/4,小芳捐的一定比小明多吗 为什么 (分别讨论)
教学目标:1、在具体的情境中,进一步加深对分数的认识;学会用分数描述生活中的事物,进一步理解和掌握分数的意义。
2、结合具体的情境,使学生体会一个分数所对应的“整体”不同,所表示的具体数量也不同,并能对分数作出合理的解释。发展学生数感,让学生体会生活中处处有数学。
教学重、难点:引导学生理解分数所对应的“整体”不同,所表示的具体数量也不同。
教具准备:2个分别装有8枝铅笔的文具盒,1个装有6枝铅笔的文具盒。一把铅笔;多媒体课件。
学具准备:格子纸,画有16个小圆、8朵花的图纸。
教学过程;
一、开门见山,复习导入。
1、师板书“1/2”
问:同学们,这是什么数?
生:分数(师板书:分数)
师:你能读出这个数吗?
生:二分之一。
师:你能说说这个数表示的具体意义吗?
生1:我把一个圆片平均分成两份,涂色1份,涂色部分占整个圆片的1/2。
生2:我把一个长方形平均分成两份,涂色1份,涂色部分是长方形的1/2。
生3:我把一堆桃子平均分成两份,拿走1份,拿走的部分是这一堆桃子的1/2。
…………
(师板书:整体 部分)
生上台活动演示。
二、创设情境,探究新知。
师:同学们对学过的知识掌握得很好,想不想对分数作进一步的探究呢?(再认识)
1、活动一:拿一拿
师:下面我们来做一个游戏好不好?
师出示两个文具盒。
师:这文具里装有铅笔,你们知道有多少枝吗?
生摇头:不知道。
两男生活动,各拿出了4枝铅笔。(师板书:4)
一女生上讲台。
生1:应该还是4枝。
生2:我想也有可能是3枝,也有可能是5枝。
生3:不好猜,因为我不知道这盒铅笔的总数是多少。
(这时这位女生上台拿出了3枝。 )
师:你们发现了什么?
生1:男生拿出铅笔总数的1/2都是4枝。
师口述:他们拿的都是4枝,说明他们拿出来的是一样多。(板书:相同)
生2:男生拿出铅笔总的1/2比女生拿的多。
师口述:男生拿出的铅笔比女生多,说明他们拿出来的不是一样多。(板书:不同)
师:你们真是善于发现的好孩子,现在你们有什么疑问吗?
想一想,再小组讨论。
小组讨论后,全班汇报交流。
生1:两个男生文具盒中的铅笔总数应该是一样多。所以他们俩拿出的1/2也一样多。
生2:女生文具盒中的铅笔总与男生的铅笔总不一样多,所以他们拿出的1/2就不一样多,。
师:你们能猜出男生盒中有多少枝铅笔吗?
生:8枝。
师:你是怎么想的?
生:因为铅笔总的1/2是4枝,也就是把铅笔总数平均分成2份后,每份是4枝。所以铅笔总数是4×2=8(枝)。
师:你们同意这位同学说的吗?
生:同意。
师:都同意?我们来看看他推测得可正确。(验证:让两男生打开文具盒,展示文具盒中的铅笔。)
生(异口同声):6枝。
女生拿出文具盒中的6枝铅笔高高举起。
(师板书:8、6)
师引导小结:同一个分数所对应的整体相同,它所表示出来的具体数量也相同,对应的整体不同,它所表现出来的具体数量也不同。
(随机板书:相同,不同)
2、活动二:看一看。
师:下面,我想给同学们介绍两位小朋友,你们想认识他们吗?
(课件展示:小军和小明看书的情境图)师引导学生观察情境图,捕捉有用的数学信息。
师:他们俩看的是同样的书吗?(不是)
师:根据图中的信息,想一想:他们俩都看了手中书的1/3,看的页数会一样多吗?(不一样多)
师:为什么呢?
生:他们两个人的书厚度不一样,小明的书厚些,小军的书要薄得多。
师:那谁会看得多些呢?
生:小明看得多些,因为他的书厚。
师:说得真好。同样都看了整体的1/3,对应整体大,它所表示出来的具体数量就大,对应的整体小,所表示的具体数量就小。
生:小明的书共有150页。
师:你是怎么想的?
生:因为小明读了这本书的1/3是50页,把全书平均分成3份,其中的1份是50页,所以3份就是150页。
师:同学们同意他的说法吗?(同意)。你真是一个肯动脑筋的孩子。那你们知道小军的书共有多少页吗?(15页)。
师:这也就是说,都看了整本书的1/3,看得越多,说明1/3所对应的整体就越多。
生1:我们班共有23人,她是其中的一位,我想用1/23来表示她。
生2:她是我们小组的一员,我们小组有6位同学,我想用1/6来表示她。
生3:我用1/2来表示她,因为我们班有两位大组长,她是其中的一位。
生4:我想用1/12来表示她,我班共有12位女生,她是其中一位。
生5:我用1/4来表示她,我班今天有4个人穿了黄色上衣,她是其中的一位。
…………
师:同样一个人,怎么能用不同的分数来表示呢?
引导生小结:同一个具体的数量,它所在的整体不同,表示它们的分数也就不同。
3、活动三:圈一圈,画一画。
师:现在请同学们拿出课前发给同学们的图纸,我们来动手圈出圆的1/4,花的3/4。
生动手圈,师巡视,生交流汇报(投影展示)。
生1:我把16个圆形平均分成4份,圈出其中的1份。
生2:我把8朵花平均分成4份,圈出其中的3份。
评价。
师:刚才同学们在圈一圈环节表现得非常好,现在我们拿出课前发给同学们的方格纸来动手画一画。(展示,交流,评价)
三、知识应用,加深体验。
师:接下来,我们来看大屏幕上问题(课件展示)
师:想一想,小组交流(师巡视,生小组讨论)
生1:不确定。
师:“不确定”是什么意思?
生:因为他们整体没有明确地说出来,整体不确定,那么捐的钱数也就不能确定了。
师追问:能举例说明吗?
生1:假如小明有8元钱,平均分成4份,捐了其中的1份就是2元,假如小芳有8元钱,也平均分成4份,捐出其中的3份就是6元钱,那么小明捐的钱就比小芳少。
生2:如果小芳有4元钱,她捐了3份,就是3元钱,如果小明有24元钱,仅管小明只捐了1份,但他捐了6元钱。那么小明捐的钱就比小芳多。
生:有
师:能不能也举个例子?(生思考约1分钟后举手要求发言)
生:假如小芳零花钱有4元,她捐了1/4,就是捐了3元。假如小明有12元,把它平均分成4份,捐出的1份,正好也是3元,他们捐款数就是一样多。
师:你说得太好了。
(生也兴奋的鼓起掌来)
四、课堂总结。
师:这节课我们学习了“分数的再认识”,你有什么新的认识?
生:同一个分数对应的整体不同,所表示出的具体数量就不同。
生2:如果同一个分数对应的整体不同,所表示部分量就不同。
师:说得非常好!和同学们在一起学习真高兴,下课。
教学内容:北师大版小学数学五年级上册34---35分数的再认识。
教学目标:1.在具体的情境中,进一步认识分数,发展学生的数感,理解分数的意义。
2.结合具体的情境,体会“整体”与“部分”的关系,感受分数的相对性。
3、体验数学与生活的密切联系。
教学重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。
教学难点:结合具体情境,体会“整体”与“部分”的关系,感受分数的相对性。
教具准备:22支铅笔、多媒体课件(或1个红苹果、3个青苹果、6个白色圆片、2个红色圆片、34页“画一画”的三种画法图)
教学过程:
一、了解起点,引入新课(3分钟)
1、师:我们三年级的时候认识了分数,能说几个你熟悉的分数吗?(生:,……)
2、师:你能选择一个分数说说这个分数的含义吗?(指2人说,同桌说一次。)
3、简单做一总结:就是把一个物体或者一个图形平均分成2份,其中的1份就是,今天我们来继续认识一下分数。(板书课题:分数的再认识。)
二、结合具体情境,深化理解分数的意义
1、活动一:(5分钟)
呈现4个不同颜色的水果(1个红苹果3青苹果。)
师:你能从这些水果中看出分数吗?
生1:红苹果是
师:谁的?
生1:红苹果是整体水果的(是四个苹果的)
生2:青苹果是整体水果的。
师:刚才这个同学说的很好,他说整体水果,你怎么理解呢?
生:就是把1个红苹果和3个青苹果看成一个整体。(板书:一个整体)
出示6个白色圆片2个红色圆片,让学生观察,写下自己找到的分数,然后指名汇报,要求解释自己所写分数的意义。学生可能出现:、(红、白两色圆片占整体圆片的,师:假如老师拿走八分之八的圆片,其实就是拿走了多少?生:拿走了整体“1”。)
师:原来我们不但可以把一个物体或者图形中的一部分用分数表示出来,而且还可以把几个物品或者图形看成一个整体,然后用分数表示其中的一部分。
2、活动二:(10分钟)
出示三个盒子,分别装有8、6、8支铅笔。
请三名学生到前面准备拿铅笔
师:请先说说你打算怎么拿?
生1:我准备把全部铅笔平均分成2份,拿出其中的一份。
生2:我准备用铅笔的总支数除以2,看看得几就拿出几支。
现场组织活动:(请三位同学分别从一堆铅笔中拿出。结果三位学生的结果不一样多,两位学生拿出的是4支,另一位学生拿出的是3支)
师:你发现了什么现象?你有什么疑问?想提什么问题呢?
生:他们拿出的支数有的一样多,有的不一样多,为什么呢?
师:他们都是拿出全部铅笔的,可是拿出来的铅笔却有的一样多,有的不一样多,这是为什么呢?请想一想,然后小组交流一下。
学生交流后全班反馈。
生1:我认为三盒的铅笔总数不一样多。
生2:可能是数错了。
师:请你上来帮助数一数,看看是不是数错了呢?
让学生上来数一数,证实数对了。
学生都表示同意。
生1:我这个盒子里全部的铅笔是8支,全部铅笔的是4支。
生2:我这个盒子里全部的铅笔是6支,全部铅笔的是3支。
生3:我这个盒子里全部的铅笔也是8支,全部铅笔的是4支。
师生一起小结:哦~~ 原来是盒子里的铅笔数量不同造成的!一盒铅笔的表示的是把这盒铅笔平均分成两份,其中的一份就是这个整体的。但由于分数所对应的整体不同(也就是铅笔的总支数不一样多),所以表示的具体数量也不一样多。
师:喔,原来分数还有这样一个特点,你对它是不是又有了新的认识? (是)
3、说一说(2分钟)
出示教材p34的说一说情境图。
指名学生说一说,重点是关注学生的思维过程,以及判断的依据。
4、画一画(5分钟)
师:机灵狗也想和大家一起来学习,可是被一道题目难住了,你们愿意帮助它吗?(课件出示题目)
师:看懂题目了吗?你觉得这三个小朋友画的对吗?为什么?
生:我觉得他们画的对,因为一个图形的是□,就说明这个图形有4个□,而这三个小朋友画的都是4个□,所以都是对的。(一个学生说不完整,可以由其他同学补充说明。)
师:哦,原来这个图形只要是4个□就可以了,形状可以不同。你们还有其他画法吗?在作业本上试一试。
学生独立画一画,然后交流展示。注意让学生判断画的是否正确。
三、巩固练习
完成教材p35练一练中的题目。
1、第1题(3分钟)
先让学生独立填一填,在组织学生交流。重点让学生说一说第1、2、3、6个图形的思考过程,进一步加深对分数的认识。(图1是把一个正六边形平均分成六份,取其中的4份,可以用或表示;图2是把一个正方形平均分成8份,其中有两份没有分开,但分数表示的时候要注意应是;图3是12个小圆圈组成的一个整体,蓝色部分占整体的,也可以用表示;图6则是需要旋转,把内圆和外圆组合起来看,用分数或表示。)
2、第2题(2分钟)
让学生独立涂一涂,并说想法,让学生体会涂法的多样性。
3、第3题(4分钟)
学生画一画,并说一说画法,体现画法的多样性,用展示台展示学生作品。然后判断这些图形的大小一样吗?进一步让学生体会一个分数对应的“整体”不同,所表示的具体数量也不相同。
4、第4题(3分钟)
结合“捐零花钱”的实际问题,进一步理解分数的意义,体会分数的相对性。学生读题后,让学生说说自己的想法,关键是让学生解释理由。
四、你知道吗?(1分钟)
学生自己阅读,感受分数的历史悠久和中华民族的聪明才智。
五、课堂小结(2分钟)
1、今天你有什么收获?对自己的评价怎么样?
2、学过今天的知识,你想到哪些分数?你是怎么想的?
北师大小学数学五上《分数》单元第一课时
教学目标:
1.合具体的情境,进一步体会"整体"与"部分"的关系.
3,通过学生参与具体操作活动,体验数学思考的教程与乐趣.
教学重,难点:
体会一个分数对应的"整体"不同,所表示的具体数量也不同.
教学过程 :
复习与引入:
出示:
师:请用一个数分别来表示图中的涂色部分
生:1/2, 1/2,1/4
师:请你说一说1/2表示什么意思
生:把一个整体平均分成2份,其中的一份是这个整体的1/2
师:分数3/4表示什么意思
师:这个整体不仅可以是一个物体,也可以是表示一堆物体.
师:这是两张同样大小的长方形纸,这两个1/2相等吗
生:相等(板书:1/2=1/2)
二,取珠子,比多少
1.取1/2
生1:从a盒子中取出了3个
生2:从b盒子中取出了4个
师:同样是取了1/2,为什么会不一样呢
(同桌互相议论)
师:猜一猜,哪个盒子中的珠子数量多一些 为什么
生4:b盒子多一些,因为取出来的多一些,总体也就多一些
师:每个盒子各有多少个 怎么知道的
生6:各放入8个
生7:各放入6个
师:也就是放各自对应的整体相同.
2.练习:
如果李老师与小明看的书交换,还是各看了1/3,谁看得多 为什么
3.比大小,放珠子
师:我们知道,1/4小于3/4
学生讨论
一组同学商量,到前台操作展示过程
同桌甲:从a盒中放入12个,从b盒中放入4个
同桌乙:从a盒中放入16个,从b盒中放入4个
生:我发现a盒中放入的珠子要比b盒中的多才行.
学生讨论操作
生:我发现只要a盒中放入的珠子是b盒中的3倍,就相等
师:这是为什么
生:因为b盒中取的份数是a盒的3倍
三,分析与讨论
生1:不能比
生2:1/4小于3/4
四.练习:
1.p34画一画:
一个图形的1/4是 ,这个图形什么
2.填空:
一筐苹果的1/5是1个苹果,这筐苹果共个
一筐苹果的1/6是1个苹果,这筐苹果的2/6是个
一筐苹果的1/2是2个苹果,这筐苹果的1/4是个
一堆苹果的2/5是400千克,这堆苹果共千克.
3,p35:小明捐了零花钱的1/4,小芳捐了零花钱的3/4,小芳捐的一定比小明多吗 为什么 (分别讨论)
结合具体情境,进一步体会“整体”与“部分”的关系,单位“1”的概念的扩展。
投影
>在三年级我们第一次认识了分数,初步了解了一些有关分数的知识,咱们一起来回忆回忆。
1,用分数表示下图中的阴影部分,并试着说出这个分数所表示的意义。
此主题相关图片如下:
意图: 理解分数表示的意义。体会分子、分母各自表示的意思。
2,拿出八支黄色铅笔的1/4,拿出八支蓝色铅笔的3/4。
意图:体会1/4和3/4的整体相同,但各自表示的数量不同。
引入:这节课我们就在初步认识分数的基础上,进一步认识和理解分数,共同学习分数的再认识。
设计意图:回忆已学过的相关知识,为新课学习做准备,激发学生对本节课内容的好奇心、探索欲。
1,活动:全班分成六组,每组从铅笔盒中拿出铅笔总数的1/2。
意图:让学生体会“1/2”的拿法。
2,汇报:1组汇报铅笔总数和拿出的铅笔数及拿法。
2组汇报拿出的铅笔数。
师:怎么拿出的铅笔数一样多呢?(因为铅笔的总数一样多。)
意图:发现拿出的铅笔数相同,原因在于铅笔总数相同。
3组汇报拿出的铅笔数。
4组汇报拿出的铅笔数。
5组汇报拿出的铅笔数。
6组汇报拿出的铅笔数。
1、师:怎么拿出的铅笔数不一样多呢?(因为铅笔的总数不一样多。)怎么有的同学拿出的铅笔数多,有的同学拿出的铅笔数少呢?(因为铅笔的总数有的多,有的少)如果铅笔的总数发生变化,那拿出的铅笔数也就随着发生变化。看来铅笔的总数还是很关键的。
意图:发现拿出的铅笔数不同,原因在于铅笔总数不同。由于每盒中铅笔总数不同,因此铅笔总数的1/2就不同。对于“1/2”这个分数而言,由于所对应的整体不同,所以“1/2”表示的具体数量也不同。通过情境,使学生自然地进入探究新知的过程中。发现问题提出假设,同时培养学生观察分析能力。
2.在拿铅笔的活动中,你发现了哪些相同的地方?
六组同学拿铅笔的方法相同,都是把铅笔总数看成一个整体,平均分成2份,拿出了其中的1份。也就是说,拿出的1份是2份这个整体的1/2。
设计意图:为学生创设宽松和谐的学习氛围,让学生在活动中自己发现问题,再组织学生讨论解决,培养合作交流的能力提高学生的学习能力,体会一个分数对应的“整体”不同,所表示的具体量也不同,加深对分数的认识。
3.说一说
下面各图形的1/2,他们的大小一样吗?
意图:讨论交流的过程中,进一步体会分数对应的“整体”不同,分数所表示的部分的大小也就不一样。即分数具体相对性,有意识地培养学生认真倾听他人发言的好习惯。
意图:体会同样是喝一杯饮料的1/3,由于整体有可能不同,所以喝的1/3的多少也可能不同。
意图:体会同样是喝一杯饮料的1/2,由于整体不同,所以喝的1/2的多少不同。
3.为帮助南方受雪灾地区的灾民,小明捐献了零花钱的1/4,小芳捐献了零花钱的3/4,小芳捐的钱一定比小明多吗?请说明理由。
意图:进一步理解分数的意义,体会分数的相对性。
意图:为了更好地促进今后的教学。
生:能。
师:把你全部圆片的二分之一拿出来给大家看一看。
学生拿出来,举给大家看。
师:你拿几个?是怎么样拿的?
生1:我拿3个,我有六个圆片,六个圆片的二分之一是6÷2=3个,所以我拿出3个。
生2:我拿2个,二分之一就是圆片平均分成两份拿其中的一份,我一共有4个圆片,平均分成两份,其中的一份就是2个。
生3:我拿2个,因为二分之一就是所有物体的一半,我有4个圆片,一半就是2个。
生4:我拿2个,我一共有4个圆片,它的二分之一就是2个。
生5:我拿3个,因为我有六个圆片,它的二分之一就是3个。
师:看到这种情况,你有什么疑问呢?
生2:为什么我们拿出来的二分之一有的相同有的不同呢?
师:是啊,为什么呢?我们今天就来进一步认识分数,解决你心中的疑问。(板书课题:分数的再认识)
生:我觉得是因为总数的数量不一样。
师:能说的具体点吗?
生:总数就是原来有的人拿了6个圆片有的人拿了4个圆片,说明他们本身拿到的圆片总数就不同,所以拿出来的二分之一也不相同。
师:还有想说的吗?
生:二分之一就是一个物品它的一半,他们原来拿到的圆片有的是4个有的是6个,他们拿的时候都是把自己的圆片平均分成2份,拿其中的一份。所以有的是2个有的是3个,就不一样了。
师:恩,她们两个都有了自己的想法,你又是怎么想的呢?说给小组的其他同学听一听。
学生小组内说一说,教师巡视。
师:大家讨论交流以后,谁能把自己的想法说的更具体更明确呢?
生1:有的人是拿到6个圆片,有的人拿到4个圆片,二分之一是拿出总数的一半,所以有的人拿出来的是3个,有的人拿出来的是2个。
生2:总数的数量不同它的二分之一就不同。
师:说的真精辟!谁还能举例说明?
生:比如说可以把6个圆片看作一个大苹果,4个圆片看作一个小苹果,用刀把这两个苹果都切一半出来,当然是不一样多的了!
师:大家觉得他这样比喻,有没有道理?
生齐答:有道理!
师:那为什么有的同学拿出来的二分之一是一样的呢?
生1:因为他们原来的圆片就是一样多的,比如:我和我同桌,我们两个拿到的圆片都是4个,拿出的二分之一也都是2个,一样多。
生2:老师,如果原来圆片一样多,拿出来的就一样多,原来圆片不一样多,拿出来的就不一样多。比如:我和我同桌,我原来拿到6个圆片,她原来拿到4个圆片,我拿出来的二分之一就是3个,她拿出来的二分之一就是2个,是不一样多的。
学生数自己的圆片,检验结论是否正确。
师:原来有4个圆片的同学请举手。你们拿出的二分之一是几个?
生齐答:2个。
师:原来有6个圆片的同学举手,你们拿出的二分之一是几个?
生齐答:3个。
师:都是这样吗?
生:是的!
师生一起总结:从刚才的结果我们就可以发现:每个人拿的二分之一,都是把自己的所有圆片平均分成2份,其中的一份就是自己全部圆片的二分之一,由于分数二分之一所对应的整体不同(也就是圆片的总数不一样多),所以表示的具体数量也不一样多。
(课件出示教材p34说一说的情境图。)
生1:我觉得他们看的不一样多,因为黄衣服的孩子看的书比较厚,红衣服的孩子看的书比较薄,所以它们的三分之一就不一样多。
生2:我觉得黄衣服的孩子看的比较多,因为他的书厚一些,就象我们刚才说的圆片一样,6个圆片的二分之一比4个圆片的二分之一多,现在这两个孩子看的分数是一样的,但是他们的书薄厚不一样,所以书厚的这个孩子应该看的比较多一些。
师:他们说的你听懂了吗?你是怎么想的呢?和同桌的同学说一说。
(学生交流。)
(出示两条线段,第一条线段比第二条线段短一些,如图:)
生:不一样!
师:为什么?
生1:两只蚂蚁都走四分之一,可是第一条线段比第二条线段短,所以两只蚂蚁走的不一样长。
生2:在这里四分之一指的是分别把每一条线段平均分成四份取其中的一份。可是这两条线段的长度不一样,所以它们的四分之一也不一样,两只蚂蚁走的长度就是不一样的。
生3:两只蚂蚁都走四分之一,可是这个四分之一对应的整体不同,就是两条线段的总长度不同,所以两只蚂蚁走的这个四分之一也不相同。
师:那么根据两条线段的长度,你能判断出哪只蚂蚁走的长吗?
生1:因为第一条线段比第二条线段短一些,两只蚂蚁分别走它们的四分之一,所以我认为第二只蚂蚁走的长一些。
生2:两只蚂蚁都走了线段的四分之一,线段本身越长它的四分之一也就越长,所以第二只蚂蚁走的长,第一只蚂蚁走的短。
师:大家说的非常好,如果让你动手画会怎么样呢?
(课件出示p34画一画的题目:“一个图形的是□,画出这个图形。”)
师:你能看懂题目吗?你是怎么想的?
生1:是让我们画出一个正方形的有多大。
师:有不同意见吗?
生2:我认为是有4个小正方形组成的图形,它的四分之一才是一个小正方形呢。
生3:我觉得一个图形的四分之一是一个小正方形,也就是说这个图形的一小块是小正方形,让我们画出整个图形。
师:听懂了吗?会画吗?请动手画一画。
(学生动手画,教师巡视,帮助有困难的学生。)
展示学生作品,请其他同学进行评价。
师:请看这个作品,你觉得画的对吗?
生:我觉得对,因为它有四个小正方形组成,它的四分之一就是一个小正方形,所以是对的。
师:其他同学呢?
生齐答:画对了!
师:这两个呢?
生:对!
师:我们请作者介绍一下想法,怎么样?
(在同学们热烈的期待中,请上作者)
生1:我觉得只要是4个小正方形组成的图形就可以,既然可以横着排一排,也可以上面排一个下面排三个,这样和起来也是四个小正方形,它的四分之一就是一个小正方形。
生2:我和他的想法差不多,既然可以象他们那样排列,我觉得我这样排列也很好看。
一名学生抢着发言:老师,我觉得我画的也很好看,而且里面有四分之三和四分之一。
师:是吗?请你拿上来给大家看看。
他带着自己的作品上来,展示给大家看
他介绍:我画的这个图形的四分之一也是一个小正方形,就是画斜线的这个,没画斜线的三个就是这个图形的四分之三。
师:大家觉得这个同学画的怎么样?
学生纷纷说:非常好!很有创意!
在大家的一致认同下他们回到自己的座位上。
师:你还有其他不同的画法吗?
展示几个不同画法,大家一起判断对错。
对于最后一种方法,大家看法不一,有的认为对有的认为错。
师:请大家找出理由来支持你的看法。
生1:我认为是错的,因为她画的不是一个图形,是四个小正方形。
生2:我认为是对的,因为它的四分之一就是一个小正方形。
生3:我认为是错的,虽然它的四分之一是一个小正方形,可是它不是一个图形。
生4:我认为是对的,我们可以把这四个小正方形看成一个整体,它的四分之一就是一个小正方形了。
师:大家的理由都很充分,我们一起听听它的作者怎么说,好吗?
学生睁大眼睛看着这个作品的作者走上来。
这个学生解释说:我是受练一练第一题那12个小圆组成一个大圆的启发,我觉得可以把四个小正方形看成一个整体,这样它的四分之一就是一个小正方形了。
学生都表示赞同。
生:当然能了!
师:请打开书35页,练一练第一题在书上填写出来,比一比谁填的又对又快!
(学生填写,教师巡视)
师:谁来说一说你是怎么填的?
生1:第一个是六分之四,第二个是八分之五,第三个是十二分之九,第四个是四分之一,第五个是六分之三,第六个是二分之一。
师:还有不同的看法吗?
生2:我觉得第六个还可以写成八分之四。我是这样想的里面的小圆涂色部分是4块,外面的大圆涂色部分是4块,把它们结合起来看,正好就是把两个圆平均分成8份,涂色的有4份,就可以用分数八分之四来表示了。
生3:我的第五个是用二分之一表示的,因为一共是六个三角形,三个涂色的三个没涂色的,各占一半,所以用二分之一表示。
师:谁能说说第三个是怎么填的?
生:我填的是十二分之九。
师:你是怎么想的?
生:我把十二个小圆看成一个整体,涂色的有9个小圆,所以就是十二分之九。
师:看一看第二题,你会画吗?
生:(齐答)会!
师:请你画在自己书上。
(学生画图,教师巡视)
展示学生作品,大家观察是否正确,并请两位学生说一说画法,
生1:我画出最下面的一行三个小三角形表示四分之三,画出左边的五个小正方形表示八分之五,画出上面的两行小圆圈表示三分之二。
生2:我画出左边的三个小三角表示四分之三,画出上面四个加下面一个小正方形表示八分之五,画出右边的两竖行小圆圈表示三分之二。
师:最后一个三分之二为什么要画6个小圆圈呢?
生1:因为我们可以把这九个小圆圈看成一个整体,它的三分之二是6个圆圈。
生2:我们可以一行一行的看,一共是三行,所以三分之二就是两行,两行正好就是六个圆圈。
师:我们看到这几个同学画的都不一样,你们却都说是对的,为什么?
生抢答:虽然他们画的形状不一样,但是他们画出来的数量是一样的,第一个图都是画的三个小三角形,第二个图画的都是五个小正方形,第三个图都是画的六个小圆圈。
生:能!
师:看谁画的又对又快,开始吧。
(学生在书上画一画,教师巡视)
生:(齐答)不一样!
师:为什么?
生1:因为这些图形的大小不同,所以它们的二分之一不一样大。
生2:因为它们的二分之一是把他们本身平均分成两份,它们本身就不一样大,所以分成的二分之一也不一样大。
师:恩,大家觉得他们说的有道理吗?
生:(齐答)有道理!
师:这些知识在生活中有哪些应用呢?请看(课件出示p35练一练的第四题)请自己读一遍题目。
(学生读题)
师:你怎么看待这个问题?
生1:我认为小芳捐的钱不一定比小明的多,如果小明的钱很多,小芳的钱很少的话,也许小明比小芳捐的还多呢。
生2:我可以举例子说明,比如:小明有100元钱,他捐四分之一就是25元,小芳只有10元钱,她捐四分之三才是7.5元,这时候小芳就比小明捐的少了。
生3:这里没有说清他们原来谁的钱多谁的钱少,所以我觉得不能确定,如果小明原来的钱比小芳的钱多很多的话,小明就可能比小芳捐的多,如果小明原来的钱比小芳的钱只多一点或者还要少一点,他捐的钱就可能比小芳捐的少了。
生纷纷抢答:捐钱!给他衣服!给他捐书!
师:大家都是有爱心的孩子,这样非常好!
师:通过今天的学习,你有哪些收获呢?
生:在原来的时候我们一定会认为四分之三一定比四分之一多,可是今天我们发现不是这样的,比如刚才那道题,如果小明的钱比小芳的钱多很多,那么他捐的四分之一就可能比小芳捐的四分之三还多。
生2:我认为总数不同,分数就不同。
生:是的。
自9月19日开帖,已一个月了。一个月来,教学之余,就上网看帖、回帖,思考、探索、尝试。虽忙碌着、苦恼着,但却一路收获着,由此也备觉充实开心。首先在这里感谢一直关心我的众网友:春苗、翟玉兰、范苇、郑璘玲、程雯、赵素萍、小江南、辉煌地……感谢桐城基地团队:基地负责人叶群武、汪定斌、刘锦霞、杨敏、程李根,感谢学校数学教研组的全体老师。是他们的热情的鼓舞和细心的指导,才使《分数的再认识》教学一步步趋向成熟,在这里每一次思维的碰撞,都让我有着拨云见日的顿悟。在这里让我一次次领略了网络教研的无限的魅力。下面就本次活动从读懂教材、读懂学生、读懂课堂方面作一简要的综述。
《分数的再认识》是在三下《分数的初步认识》的基础上对分数的进一步探索。如何体现“再认识”?这节课的起点在哪里?落脚点又在哪里?是我在最初教学设计时面临的最大困惑。
第一稿——“看山是山”。
在第一稿中,我没有细读教材,就勿勿动手设计,眼里只关注本节课的教学内容和教师用中给出的教学要求。没有考虑知识的前后联系,对本节课的教学起点更是认识不足。
1、在导入部分仅仅为了导入而导入。诚如郑璘玲老师指出的那样: “一分为二、七上八下、百里挑一”这三个成语与本节课的知识有什么关系呢?刘锦霞老师也认为:感觉“激趣设疑,引入新课”这一块有点不大自然,有点为有趣而有趣之感,与本课的衔接不大。其次,“动手操作,探究新知”中的两个活动,我觉得应该更着重第一个活动“拿一拿”,最好不宜平均用力,因为第一个活动是动手操作的,在具体的情境中,学生已经明白“一个分数对应的“整体”不同,所表示的具体数量也不相同。“说一说”只是让学生再加深印象,进行表达出来。
是啊,教学的每一个环节都要直指教学目标,如何改?我在思索着。
程李根老师认为:本节课学习“分数的再认识”,关注的焦点是“再”。既是“再认识”,必定不陌生,让我们回到三年级的“分一分(一)”、“分一分(二)”,两课时的学习中,学生体验了分数产生的过程,初步理解了分数的意义;也初步感知了“整体”与“部分”的关系,能初步运用分数表示一些事物,解决一些简单的实际问题。那么这节课再认识什么呢,研读教材和教参,对照课程标准,不难得出,本节课应突出两点:一、进一步认识分数,感知单位“1”的内涵,二、进一步理解“整体”与 “部分”的关系。
那么,针对本节课内容,我认为可以从这两点出发:1、结合练一练1、2题(它们在三年级的时候已经学习过),创设纯数学情景,在复习中打开学生的记忆闸门,充分结合学生的知识基础,展开新知学习,进一步认识分数的意义,理解单位“1”。2、围绕主题图“拿铅笔”,引导学生活动,进一步理解“整体”和“部分”的关系,同时渗透分数单位的意义,为后面的异分母分数加减法的学习作好铺垫。
3、在练习这个环节,杨敏教师的评述给了我很大的启示。
这些宝贵的建议,为我二稿设计指明了方向。
第二稿——“看山不是山”
看了网友的诸多建议,一些观点在我大脑里发生着剧烈地冲突。这时,叶群武主任给我了8条建议,让我深受启发。经过一周时间的思考,我的第二稿出炉了。在第二稿中,我的教学目标明确了,教学过程也能紧扣教学目标来设计。但从实际试教情况来看,效果并不理想。
1、重新设计了导入。用三幅图片(俄罗斯国旗、三朵红花两朵黄花、平均分成六份的六边形其中三份涂成红色)让学生用什么数来表示其中红色的部分,并说出它具体的意思,旨在让学生对整体“1”的认识经历由单个物体到多个物体到抽象图形的过程,了解学生对已有的知识掌握程度,明确本节课的学习起点。但在实际试教中,效果并不理想,许多学生因为问题的指向不明,都用整数来表示,让我大伤脑筋。最后不得已直接让学生用分数来表示,自己的设计意图落空了。
2、重新设计了教学情境图。将教材中的主题情境图的两位男生一位女生拿铅笔,改为两位男生和两位女生拿铅笔。本意是为了更加突出整体相同,同一个分数所对应的部分也相同,整体不同,同一个分数所对应的部分就不同。但从试教来看,同学们看取男生拿出了相同的枝数,女生也拿出了相同的枝数,是理所当然的,根本不关心男生和女生之间的不同。
3、重新设计了练习,并在练习环节上,作了调整。在“活动一”结束后,我加入了一个练习——用什么分数来表示这枝削了的铅笔?(8枝铅笔,有5枝红色,3权蓝色,其中蓝色铅笔有一枝被削过),其目的是想通过此练习让学生进一步理解,相同的部分在不同的整体中可以用不同的分数来表示,以达到即时巩固,即时反馈。但在练习时,学生不知从何说起。最后只好老师先开个头做示范,才打开学生的思路。
面对这些问题,我再一次深深地陷入了苦苦地思考之中。是什么原因让我自以为满意的设计面对学生却并不买帐?究其原因,一是没有真正的读懂教材。二是我没有读懂学生,是自己的一厢情愿。
1、修改主题情境是一大败笔。两位男生都拿出4枝铅笔,女生拿出3枝铅笔,就能很好说明整体与部分之间的关系。在活动中,也能更好将学生从注意“相同”引向对“不同”的注意。而二稿这部分的设计,两位男生拿出相同枝数的铅笔和两位女生拿出相同枝数的铅笔,掩盖了他们之间的“不同”。使活动没有很好的落实教学目标。
试一试 课件展示,8枝铅笔(五枝红色,三枝蓝色,其中一枝蓝色铅笔是削好了的)
问:你能用什么分数来表示这削了的铅笔呢?
生1:是总铅笔枝数的1/8。
生2:是蓝色铅笔枝数的1/3。
生3:是第一横排铅笔枝数的1/4。
生4:是一个竖列铅笔枝数的1/2。
画一画
一个图形的1/4是□ ,(1)画出这个图形,生完成后,用幻灯展示各学生的图形。(2)涂出所画图形的2/4。(3)涂出所画图形的4/4。
这个环节“画一画”为什么也放在《活动二:说一说》的里面 ?
我觉得“试一试”“画一画”还是放在第三部分《三、知识应用,加深体验》里比较合理。因为在学生动手拿过,动嘴说过之后,对分数的再认识有了一些体验,再来“试一试”、“画一画”,就更能加深学生对新知的理解和认识,这样安排设计,也就能自然达成本课所提出的“教学目标”了。
3、导入的设计太繁,没有考虑学生已有的知识和本节课将要学习的新知。
对本节课的导入,叶群武主任和汪定斌校长看了二稿后,一天晚上在qq中讨论到11点多。他们认为,既然新课第一个活动是“拿一拿”,可不将三下的《分数的初步认识》练一练每3题加以改造成“老师手中有一把铅笔,你能从中拿出它的1/2吗?应该怎样拿?”然后直接过渡到“活动一”,这既复习了前面学过的知识,又为进一步探索作铺垫。后来杨敏老师提出,直接开门见山,课始就在黑板上呈现“1/2”这个分数,然后让学生读一读,说一说它的意思,再到实际分一分,拿一拿。这样既简捷明了,又紧扣主题。
三稿——“看山还是山”
带着网友们的建议,和自己的思索,我又进行了第三稿设计。
在这一稿里,我对二稿作了大幅度的修改。
1、导入部分采纳了叶群武主任和杨敏教师的建议,开门见山,直奔主题。
3、练习部分我根据程雯老师和程李根老师的建议,将“会用哪些分数表示那那支‘备受争议的削过的铅笔’”改成利用学生身边的资源,让学生说一说怎样用一个分数表示班上的一位同学。
去掉了网友们认为难度较大的“糖果”那一题,同时深入挖掘“为汶川捐款”一题的数学价值。
通过试教,这一次的效果明显优于二稿。在这里需要说明的是,由于我校规模较小,五年级没有平行班,只好借用四年级学生试教第三稿。(会不会是五年级学生因为分数初步认识后丢的时间长了?)
在整个网络教研活动过程中,我对好的建议,能做到从善如流。但我也有我的坚持。不少网友建议,“活动一”要让每个学生都“拿一拿”,至少是分组“拿一拿”。我个人认为学生参加活动,并不是都是非得要亲自动手才算参与,学生积极观察、思考也应该是参与活动的另一种形式。这个环节的拿一拿本身是很简单的,如果分成小组活动,就失去猜测的神秘感,同时也不好组织。但从“拿一拿”结果的不同而引发的思考才是这个活动的目的。让四个同学分成两组上讲台,代表全班同学来拿一拿,其他同学一起观察—思考—猜测—验证,反而能更好地实现这个目的。关键点在于教师精心组织,把学生的注意力都集中到活动中来。
汪定斌校长也为我的坚持给予了很大的支持。汪校长认为:
1、“拿”的本身并不难完成,其目的是要让学生从“拿”的相同与不同的结果中,引发学生的思考。
2、从课堂教学组织方面来看,也效为容易。而让每位同学都“拿”显然不合实际,因为每个同学在“拿”的过程中,已然知道整体是多少了(如果在三下“分数的初步认识”教学中这样组织活动较为合适),失去了思考的价值。分组活动亦然。
3、从教材的情境图来理解编写的意图也是如此。情境图中,有三位同学在“拿”铅笔,其他同学则没有“拿”,而是在思考。
当然,有些活动必须让学生人人都要亲自动手操作感受——如亲手掂一掂感知“1克”“1千克”有多重,亲自动手比一比“1厘米”“1分米”“1米”有多长等等。
《分数的再认识》这节课的教学设计与课堂展示网上研讨部分到此为止将告一段落了,然而它带给我对“读懂教材、读懂学生、读懂课堂”的思考才刚刚开始。在此,对本次活动的组织者深表感谢,再一次感谢和我一起研讨的朋友们。是你们将我引上了一条全新的探索之路,我将沿着这条路坚定的走下去。
教学内容义务教育课程标准实验教科书(北师大版)五年级上册34—36页。
教学目标
1、在具体的情境中,进一步认识分数,发展学生的数感,理解分数的意义。
2、结合具体的情境对分数作出合理的解释,体会“整体”与“部分”的关系,感受分数的相对性。
3、体验数学与生活的密切联系。
教学重点
教学难点
突出分数意义的建构,使学生充分体会“整体”与“部分”的关系,感受分数的相对性。
教具准备
课件,任意大小的圆一个。
教材分析
教材中安排了“拿铅笔”“说一说”“画一画”等多个情境活动,目的是为了丰富学生对分数的认识,进一步理解分数,使学生体会一个分数对应的“整体”不同,所表示的具体数量也不同,进一步加深学生对分数的认识。教学时,教师要创设丰富的情境,引导学生借助直观展开充分交流,尽可能多地为学生创设独立思考、动手操作、自主探究的时间和空间,加之多媒体课件的恰当介入,让学生有所体验、有所感悟、有所发现,目的在于鼓励学生积极主动地去参与探索分数知识的全过程,通过分一分、说一说、画一画,从而经历知识的形成过程,深刻、灵活、扎实地掌握知识,完成知识的主动建构,在获得积极的情感体验的同时形成智慧,着力培养学生的主动参与及创新意识,培养学生的实践能力及创新精神。
学生分析
对于分数而言,学生是在三年级下册教材“分一分(一)”中,结合具体情境和直观操作,体验了分数产生的过程,初步理解了分数的意义,能认、读、写简单的分数;在“分一分(二)”中学生初步感知了“整体”与“部分”的关系,能初步运用分数表示一些事物,解决一些简单的实际问题。本单元在此基础上引导学生进一步认识和理解分数。这里的“再认识”已经很明确的告诉我们这里学习的分数知识与原来学习的分数知识是有区别的:一是在具体的情景中体会“标准”不同,分数所表示的意义也不同;二是结合具体的情景进一步理解“整体”与“部分”的关系。由于学生是在三年级学习的分数初步知识相隔时间较长,加之这里学习的分数意义范畴的拓展概念比较抽象,因此教师必须要做好新旧知识的衔接,让学生充分的感知。
教学过程
一、联系旧知,导入新课
(自由说出已知分数)
师:谁能给老师说说,1/2表示什么?
(1/2表示把单位“1”平均分成2份,取其中的1份)
(愿意)
师:好,大家都同意,那么请同学们拿出你手中的圆纸片,折出它的1/2。
(动手折纸)
师:谁愿意将你折的展示给大家看呢?
(两名拿有不同大小圆片的同学展示)
师:请同学们认真对比观察,他们都正确的折出了自己图形的1/2,可为什么同样是1/2,折后图形的大小却不一样呢?这就是本节课我们将要学习的《分数的再认识》。(板书课题)
设计意图:通过让学生回顾对分数的初步认识,了解学生已有知识的起点。从折出圆片的1/2,让学生从实际操作中,复习巩固分数的意义,让学生初步感知整体不同,同一个分数所对应数量也不同,从实际的情境中发现问题,提出问题,激发学生对再认识分数的探索欲望。
二、创设情境,深化理解
活动一:拿水笔
师:这儿有三盒水笔,你们能从每一盒水笔中分别拿出全部的1/2吗?
(请三名学生到讲台前)
师:你们准备怎么拿呢?
生:我准备把全部水笔平均分成2份,拿出其中的一份就是1/2。
(动手拿,并将拿到的水笔展示给大家看)
师:其他同学注意观察,你发现了什么?
生:他们三人拿出的枝数不一样。
师:为什么他们三人都是拿全部水笔的1/2,拿出的枝数却不一样多呢?请大家先自己想一想,然后小组交流一下。
(学生汇报)
生a:盒子里全部的水笔是6支,全部水笔的1/2是3枝。
生b:盒子里全部的水笔是8支,全部水笔的1/2是4枝。
生c:盒子里全部的水笔是8支,全部水笔的1/2是4枝。
师板书:
6支 1/2 3支
8支 1/2 4支
8支 1/2 4支
师:我们把水笔的总支数叫整体,将取出的1/2叫部分。(补充板书)
师:水笔的总支数不一样多,也就是整体“1”不一样,它所对应的部分,1/2的量也就不一样;水笔的总支数一样多,也就是整体“1”一样,它所对应的部分,1/2的量也就一样。
师:假设共有10枝水笔,它的1/2是多少?100枝呢?
(集体回答)
小结:总支数相同,1/2所表示的支数相同;总支数不同,同样是1/2,所表示的支数却不同。
设计意图:让学生在具体的情境中,经历“提出问题---讨论---初步得出结论---验证---总结归纳结论”的一个体验数学的过程,从中体会整体不同,同一个分数所对应的数量也不同。
活动二:说一说
师:带着对分数新的认识,我们来判断两个小朋友看的书一样多吗?为什么?(出示课件)
(学生独立思考一会,同桌交流,再全班反馈)
学生汇报:如果是同样的书,书的厚薄相同,也就是总页数相同,两人看的页数就一样多;如果书的厚薄不同,也就是总页数不同,两人看的页数就不一样多。(整体不同,相同分数表示的数量也不同。)
师:通过刚才拿水笔的游戏、观察讨论看书的情境,你发现了什么?
总结:分数相同,整体不同(相同),那么分数所表示具体的数量也不同(相同)。
设计意图:运用刚刚得出的结论来判断,进一步加深学生对分数的认识。体会同一个分数对应的整体不同,所表示的具体数量也不同。
三、巩固练习,反馈分析
画一画:国庆阅兵式上,群众演员在天an门广场排出了各种不同的方阵,现在这个正方形是其中一个方阵的四分之一,你能猜测出这个方阵的完整形状吗?请大家打开练习本,试着画一画。
(发挥想象,独立创作,板演到黑板)
……同学们的想像力真丰富,画得也不错。看来下次再有大型的表演,导演一定要来参考咱们的意见呀!请大家仔细观察,这些图形虽然形状都不相同,但是有一点是一样的,是什么呢?都是由四个正方形组成的。
选一选:根据一根圆木的1/3,判断这根圆木。根据一个圆的1/4,判断这个圆的3/4。(课件示题)
填一填:用分数表示各图中涂色部分。(课件示题,指名回答)
辩一辩:为帮助四川汶川地震灾民重建家园,小明捐了自己零花钱总数的1/4 ,小芳捐了自己零花钱总数的3/4。小芳捐的钱一定比小明捐的多吗?请说明理由。
设计意图:利用层层深入的巩固练习,引导学生对分数进行充分的再认识,通过画一画、选一选的练习,在加深学生对分数“整体”与“部分”关系的理解时,进行逆向思维练习,提高学生从部分到整体的意识,又有助于学生的空间想象能力的发展。填一填通过用分数表示涂色部分,再一次加深对分数意义的理解;辩一辩是利用生活中的情境,让学生初步体会分数整体与部分的辨证关系:同一数量所对应整体不同,所表示的分数也不同;分数不同,整体不同,所对应的数量无法比较。在练习时,需要充分调动学生的积极性,让每个学生都参与到学习中来。
你知道吗?
分数的产生经历了一个漫长的过程。古埃及在3700多年前的“莱茵德纸草书”中就有关于分数的记载.我国使用分数的时间也很早,2500多年前春秋战国时期的著作里,就有许多有关分数及其应用的记载。
四、全课总结
师:分数再认识,再认识了什么?(总结本课)
最新分数的再认识教学方法十篇(大全)
文件夹