总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,让我们一起认真地写一份总结吧。写总结的时候需要注意什么呢?有哪些格式需要注意呢?下面是我给大家整理的总结范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
数学知识点整理总结篇一
什么叫做单项式和多项式?
不含加、减运算的整式,叫做单项式。特殊的,单独一个数或一个字母
多项式。例如:4x+7,3x2+5,6x2+7x+2等都是多项式。
约数倍数:
(1)最大公约最小公倍数(2)约数个数决定法则 (小升初常考内容)
质数合数:
(1)质数、合数的概念和判断(2)分解质因数(重点)
余数问题:
(1)带余除式的理解和运用;
(2)同余的性质和运用;
(3)中国剩余定理奇偶问题:
(1)奇偶与四则运算;
(2)奇偶性质在实际解题过程中的应用完全平方数:
(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)
整除问题:
(1)数的整除的特征和性质 (小升初分班常考内容)
(2)位值原理的应用(用字母和数字混合表示多位数)
这四个问题我们需要掌握到什么样的程度?
从近几年的小升初来看,虽然一些重点中学对以上的.几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张小升初分班试卷的完成应该是能取得很好的成绩的。对此,给出小升初学生建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。
数学知识点整理总结篇二
1. 含有字母的式子不仅可以表示数量关系,也可以表示数量。 2. 含有字母的式子还可以简明、概括地表达运算定律和计算公式,方便研究和解决实际问题。 3. 如果知道给出的式子中每个字母表示的数是多少,就可以算出这个这个式子表示的数值是多少。
注意:
1.含有字母的式子中,数字和字母、字母和字母相乘时,乘号也可以记作,也可以省略不写。在省略乘号的时候,应把数字写在字母的前面。例如:a4可以写成a4或4a。
2.当1和任何字母相乘时,1可以省略不写。例如:a1都写成a而不写成1a。
3.由于字母可以表示任意数,在一些式子中,对字母表示数的要进行说明。例如:7/a(a0)。
4.因为字母表示的是数,所以在式子中每一个字母都不注明单位名称,计算结果也不注明单位名称,只在答句中写上单位名称。
1.表示相等关系的式子叫做等式。
2.含有未知数的等式叫方程
4.使方程左右两边相等的未知数的值叫做方程的解。如:x=10,使方程4x-10=30左右两边相等,所以x=10就是方程4x-10=30的解。
5.求方程的解的过程叫做解方程。
6.方程的解是一个值,解方程是求方程的解的.演算过程。
7.在小学阶段解简易方程主要运算用加、减、乘、除法互逆的关系。
关系如下:
(1) 一个加数=和-另一个加数
(2) 被减数=差+减数
(3) 减数=被减数-差
(4) 一个因数=积另一个因数
(5) 被除数=商除数
(6) 除数=被除数商
8.求出未知数的值分别代入原方程的两边(即求含有字母的式子的值),如果原方程等号左右两边相等,则所求得的未知数的值是原方程的解。
数学知识点整理总结篇三
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它能够给人努力工作的动力,因此我们要做好归纳,写好总结。那么你真的懂得怎么写总结吗?以下是小编精心整理的中考知识点总结数学整理,欢迎大家借鉴与参考,希望对大家有所帮助。
一次函数的图象和性质:
(3)图象跨越的象限:①k0,b0经过一、二、三象限;②k0,b0经过一、二、四象限;③k0,b0经过一、三、四象限;④k0,b0经过二、三、四象限。即k0,一三;k0,二四;b0,一二;b0,三四。
用割补法求面积,基本思想是全面积等于各部分面积之和,在割补时需要注意:尽可能使分割出的三角形的边有一条在坐标轴上,这样表示面积较为方便。坐标平面内图形面积算法:把图形分割或补为底边在坐标轴或平行于坐标轴的直线上的三角形、梯形等。
求函数的解析式往往运用待定系数法,待定系数法的步骤:(1)设出含待定系数的函数解析式;(2)由已知条件得出关于待定系数的方程(组),解这个方程(组);(3)把系数代回解析式。
仔细体会一次函数与一元一次方程及一元一次不等式之间的内在联系:(1)一元一次方程kx+b=y0(y0是已知数)的解就是直线上,y=y0这点的横坐标;(2)一元一次不等式y1≤kx+b≤y2(y1,y2是已知数,且y1反比例函数的定义及解析式求法:(1)定义:形如(k≠0,k是常数)的函数叫做反比例函数,其自变量取值范围是x≠0;(2)解析式求法:应用待定系数法求k值,由于k=xy,故只需要已知函数图象上一点,即求出函数的解析式。
1、反比例函数的概念。一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像。反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质。反比例函数k的符号k0k0图像yo xyo="" k=""0时,函数图像的'两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。①x的取值范围是x0,y的取值范围是y0;②当k0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x的增大而增大。
4、反比例函数解析式的确定。确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
(1)△opa的面积.
(2)矩形oapb的面积。这就是系数的几何意义.并且无论p怎样移动,△opa的面积和矩形oapb的面积都保持不变。
矩形pcef面积=,平行四边形pdea面积=
二次函数
二次函数的解析式有三种形式:
(1)一般式:
(2)顶点式:
(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
注意:抛物线位置由决定.
(1)决定抛物线的开口方向
①开口向上.
②开口向下.
(2)决定抛物线与y轴交点的位置.
①图象与y轴交点在x轴上方.
②图象过原点.
③图象与y轴交点在x轴下方.
(3)决定抛物线对称轴的位置(对称轴:)
①同号对称轴在y轴左侧.
②对称轴是y轴.
③异号对称轴在y轴右侧.
(4)顶点坐标.
(5)决定抛物线与x轴的交点情况.、
①△0抛物线与x轴有两个不同交点.
②△=0抛物线与x轴有的公共点(相切).
③△0抛物线与x轴无公共点.
(6)二次函数是否具有、最小值由a判断.
①当a0时,抛物线有最低点,函数有最小值.
②当a0时,抛物线有点,函数有值.
(7)的符号的判定:
表达式,请代值,对应y值定正负;
对称轴,用处多,三种式子相约;
轴两侧判,左同右异中为0;
1的两侧判,左同右异中为0;
1两侧判,左异右同中为0.
(8)函数图象的平移:左右平移变x,左+右;上下平移变常数项,上+下;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。
(9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。
(10)结论:
①二次函数(与x轴只有一个交点二次函数的顶点在x轴上δ=0;
②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;
③二次函数(经过原点,则。
(11)二次函数的解析式:
①一般式:(,用于已知三点。
②顶点式:,用于已知顶点坐标或最值或对称轴。
(3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。