最新上数学元次方程教案
文件夹
教案是教学活动中的一项重要内容,它是教师进行教学设计和组织实施的依据。教案编写要注意教学过程的时间分配,保证各个环节的合理安排。下面是一些教案的范例,供大家参考和借鉴。
(一)教材的地位和作用。
(二)教材的重难点。
二、教学目标分析。
(一)知识技能目标。
1.目标内容。
(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.。
2.目标分析。
(二)过程目标。
1.目标内容。
在活动中感受方程思想在数学中的作用,进一步增强应用意识.。
2.目标分析。
(三)情感目标。
1.目标内容。
2.目标分析。
三、教材处理与教法分析。
2、过程与方法:使同学们了解列出一元一次方程解应用题的方法。
3、情感、态度与价值观:通过对实际问题的解决,体会方程模型的作用,发展分析问题、解决问题、敢于提出问题的能力.
【学习重难点】。
重点:列出一元一次方程解有关形积变化问题;。
难点:依题意准确把握形积问题中的相等关系。
【导学过程】。
一、预习准备。
1、长方形的周长=;面积=。
2、长方体的体积=;正方体的体积=。
3、圆的周长=;面积=。
4、圆柱的体积=。
5、阅读教材:第3节《应用一元一次方程——水箱变高了》。
二、合作交流。
6、理解解应用题的关键是找等量关系列方程。
将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20。
厘米的“矮胖”形圆柱,高变成了多少?
2、知道方程解的概念,会检验一个数是否是某个方程的解;。
3、会根据题意列方程,能感受方程是刻画现实世界数量关系的有效模型。
【学习流程】。
一、知识链接。
1、等式:我们以前学过1+2=3x-6=03x+2=5a+b=b+a等这样的数学式子,这些数学式子都是用_________连接,表示_________关系,我们称这样的式子为等式。
(二).过程与方法。
(三).情感态度与价值观。
开展探究性学习,发展学习能力。
(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。
(三).关键:抓住实际问题中的数量关系建立方程模型。
(一)、复习提问。
1.叙述等式的两条性质。
2.解方程:4(x-)=2.
解法1:根据等式性质2,两边同除以4,得:
x-=。
两边都加,得x=.
解法2:利用乘法分配律,去掉括号,得:
4x-=2。
两边同加,得4x=。
两边同除以4,得x=.
(二)、新授。
公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题。
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台。
题目中的相等关系为:三年共购买计算机140台,即。
前年购买量+去年购买量+今年购买量=140。
列方程:x+2x+4x=140。
如何解这个方程呢?
2x表示2x,4x表示4x,x表示1x.
根据分配律,x+2x+4x=(1+2+4)x=7x.
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.
下面的框图表示了解这个方程的具体过程:
x+2x+4x=140。
合并。
7x=140。
系数化为1。
x=20。
由上可知,前年这个学校购买了20台计算机。
上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数。
例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。
分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人。
问:本题中相等关系是什么?
答:甲组人数+乙组人数+丙组人数=60.
解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:
2x+3x+5x=60。
合并,得10x=60。
系数化为1,得x=6。
所以2x=12,3x=18,5x=30。
答:甲组12人,乙组18人,丙组30人。
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.
(三)、巩固练习。
1.课本第89页练习。
(1)x=3.
(2)可以先合并,也可以先把方程两边同乘以2.
具体解法如下:
解法1:合并,得(+)x=7。
即2x=7。
系数化为1,得x=。
解法2:两边同乘以2,得x+3x=14。
合并,得4x=14。
系数化为1,得x=。
(3)合并,得-2.5x=10。
系数化为1,得x=-4。
2.补充练习。
(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)。
解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个。
列方程3x+2x=32。
合并,得8x=32。
系数化为1,得x=4。
黑色皮块为43=12(个),白色皮块有54=20(个).
(2)设全书共有x页,那么第一天读了(x+2)页,第二天读了(x-1)页。
本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数。
列方程:x+2+x-1+23=x.
初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和。这是一个基本的相等关系。
合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.
1.课本第93页习题3.2第1、3(1)、(2)、4、5题。
2.选用课时作业设计。
合并同类项习题课(第2课时)。
1.(1)3x+3-2x=7;(2)x+x=3;。
(3)5x-2-7x=8;(4)y-3-5y=;。
(5)-=5;(6)0.6x-x-3=0.
二、解答题。
3.甲、乙两地相距460千米,a、b两车分别从甲、乙两地开出,a车每小时行驶60千米,b车每小时行驶48千米。
(1)两车同时出发,相向而行,出发多少小时两车相遇?
4.甲、乙二人从a地去b地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达b地,求a、b两地之间的距离。
1、 经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。
2、 通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。
探究实际问题与一元一次方程的关系。
建立一元一次方程解决实际问题
(师生活动)设计理念
创设情境提出问题
信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。
出示教科书80页的例2;观察下列两种移动电话计费方式表:
全球通神州行
月租费50元/月0
本地通话费0.40元/分0.60元/分
1、 你能从中表中获得哪些信息,试用自己的话说说。
2、 猜一猜,使用哪一种计费方式合算?
3、 一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?
4、 对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗? 本例是一道与生活相关的移动电话收费的问题,让学生讨论选择经济实惠的收费方式很有现实意义。
理解问题是本身是列方程的基础,本例是通过表格形式给出已知数据的,通过设计问题1、2、3让学生展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。
解决问题学生充分交流讨论、整理归纳
解:1、用全球通每月收月租费50元,此外根据累计通话时间按0.40元/分加收通话费;用神州行不收月租费,根据累计通话时间按0.60元/分收通话费。
2、 不一定,具体由当月累计通话时间决定。
3、全球通神州行
200分130元120元
300分170元180元
0.6t=50+0.4t
移项得 0.6t-0.4t=50
合并,得0.2t=50
系数化为1,得t=250
以表格的形式呈现数据,简单明了,易于比较。
通过探究实际问题与一元一次方程的关系,提高分析问题,解决问题的能力。
学生练习,教师巡视,指导,讨论解是否合理
知识梳理 小组讨论,试用框图概括用一元一次方程分析和解决实际问题的基本过程
学生思考、讨论、整理。
实际问题题
列方程
数学问题 (一元一次方程)
实际问题的答案
数学问题的解
这是第一次比较完整地用框图反映实际问题与一元一次方程的关系。
让学生结合自己的解题过程概括整理,帮助理解,培养模型化的思想和应用数学于现实生活的意识。
小结与作业
布置作业
1、 必做题:教科书82页习题2.2第2题。
2、 一个两位数,个位数字是十位数字的3倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣,在本节中,引导学生从身边的移动电话收费,旅游费用等问题展开探究,使学生在现实、富有挑战性的问题情境中经历多角度认识问题,多种策略思考问题,尝试解释答案的合性的活动,培养探索精神和创新意识。
在前面几节学习中,已经对利用一元一次方程解决问题的基本过程进行多次渗透,逐步细化,本节要求学生用框图概括,使学生对应用一元一次方程解决实际问题有较理性的认识,进一步体会模型化的思想。
2、掌握等式的性质,理解掌握移项法则。
3、会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。
5、初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。
难点重点:解方程、用方程解决实际问题。
难点:用方程解决实际问题。
师生活动时间复备标注。
二、典例回顾。
(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。
判断下列x值是否为方程3x-5=6x+4的解。
(1)。x=3(2)x=3。
4、解决问题的基本步骤。
解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括号,得4x+8x+16=40。
移项及合并,得12x=24。
系数化为1,得x=2。
答:应先安排2名工人工作4小时。
注意:工作量=人均效率人数时间。
本题的关键是要人均效率与人数和时间之间的数量关系。
三、基础训练:课本第113页第1.2.3题。
四、综合训练:课本113页至114页4.5.6.7.8。
五、达标训练:3.7。
课件出示问题明确知识要点。
学生练习基础上,教师点拨。
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
3、积累活动经验。
感受方程作为刻画现实世界有效模型的意义。
1、课前训练一。
(1)如果||=9,则=;如果2=9,则=。
(2)在数轴上距离原点4个单位长度的数为。
(3)下列关于相反数的说法不正确的是()。
a、两个相反数只有符号不同,并且它们到原点的距离相等。
b、互为相反数的两个数的绝对值相等。
c、0的相反数是0。
d、互为相反数的两个数的和为0(字母表示为、互为相反数则)。
e、有理数的相反数一定比0小。
(4)乘积为1的两个数互为倒数,如:
(5)如果,则()。
a、互为倒数。
b、互为相反数。
c、都是0。
d、至少有一个为0。
2、由课本p149卡通图画引入新课。
3、分组讨论p149两个练习。
4、p150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()。
课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:
7、随堂练习po151。
p151习题5.1。
1、能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程。
2、理解什么是一元一次方程。
3、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
【重点难点】体会找等量关系,会用方程表示简单实际问题,能验证一个数是否是一个方程的解。
【导学指导】。
一、温故知新。
1:前面学过有关方程的一些知识,同学们能说出什么是方程吗?
答:叫做方程。
(二)教材的重难点。
(一)知识技能目标。
1.目标内容。
(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.。
2.目标分析。
(二)过程目标。
1.目标内容。
在活动中感受方程思想在数学中的作用,进一步增强应用意识.。
2.目标分析。
(三)情感目标。
1.目标内容。
2.目标分析。
活动3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤·活动4小结总结本节收获活动1、创设问题情境:引言:这件珍贵的文物是纸莎草文书,是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了·在文书中记载了许多有关数学的问题·问题一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。(1)能不能用方程解决这个问题?(2)能尝试解这个方程吗?(3)不同的解法有什么各自的特点?设计意图:1、利用列方程、解方程解决实际问题,再一次让学生感受方程的优越性,提高学生主动使用方程的意识·2、经过对同一方程不同解法到去分母能够使解方程的过程更加便捷,明白为什么要去分母,这是"去分母"这一步骤的必要性;同时,让学生认同"去分母"是科学的、可行的,明确为什么能去分母·这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现"方程两边同时乘以所有分母的最小公倍数"这一方法·也首次由学生自行突破了难点。3、通过交流,让学生用自己的语言清楚地表达解决问题的过程,提高学生的语言表达能力·活动2下面方程可以怎样求解?观察方程,回答教师提出的问题并对学生的回答进行总结:先去分母·怎样去分母?解去掉分母后的这个方程归纳总结去分母的方法:在方程两边同时乘以所有分母的最小公倍数;依据是等式的性质2,即"等式两边同时乘同一个数,结果仍相等·"呈现不同学生的解题过程,选取学生在去分母过程中出现的典型错误,引导全体学生共同分析错误的原因,发现去分母的易错点·巩固了学生对解方程的透彻理解。这样做的目的不仅培养了学生的学习自主性和团体协作精神,还对与重、难点知识的突破起到了一定的促进作用。通过对错例的辨析,加深学生对"去分母"的认识,避免解方程时出现类似错误·去掉分母后,方程即转化为熟悉的形式,新旧知识自然衔接,使学生体会到,只要把新问题想办法合理转化为熟悉的知识,问题就能得以解决通过在解方程过程中"去分母"这一步骤体会转化思想·活动3解方程设计意图:用实践来加深对"去分母"的方法解一元一次方程的认识·结合本题思考,能总结解这种方程的一般操作过程吗?巩固所学的一元一次方程的解法,同时说明解方程的步骤是程序化的,但不能生搬硬套,每个步骤要不要使用、何时使用都应视方程的特征而定·了解对方程的每一次变形都是为了将方程最终化归为的形式·解题时应根据题目特点,合理选择解题步骤·小结活动4总结(1)学生能否总结本节的知识,是否理解去分母的作用、依据,是否掌握去分母的具体做法;(2)学生是否掌握了一元一次方程解法的一般步骤;(3)学生是否能准确表达自己的观点·最后复习、巩固本节的知识,学会总结反思·四。评价分析数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同参与发展的过程。本节课的评价要让学生体会到参与学习、与人合作的重要性,获得成绩的喜悦,从而激发性的学习动力。在这节的数学课,如要获得最直接、真实的反馈,就要尽量让学生多说、多思考,对于学生提出的问题和解决问题的方法,教师都要给予鼓励和引导,并随时观察解决,评价应充分考虑到每个学生的差异,这节课通过现代化的技术的运用,节省出尽可能多的时间,提出挑战性的问题,让学生通过开放式的数学讨论提高学生学习的兴趣,在交流中获益。通过随堂练习和作业来激励其学习。同时做练习时,将评价及时反馈给学生,树立学习数学的自信心,促进学生的进一步发展。并在课后作成长记录,使学生比较全面了解自己的学习过程,特别感受自己的不断成长和进步,为下一步教学提供重要依据。
2、掌握等式的性质,理解掌握移项法则。
3、会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。
5、初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。
难点重点:解方程、用方程解决实际问题。
难点:用方程解决实际问题。
师生活动时间复备标注。
二、典例回顾。
(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。
判断下列x值是否为方程3x-5=6x+4的解。
(1)。x=3(2)x=3。
4、解决问题的基本步骤。
解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括号,得4x+8x+16=40。
移项及合并,得12x=24。
系数化为1,得x=2。
答:应先安排2名工人工作4小时。
注意:工作量=人均效率人数时间。
本题的关键是要人均效率与人数和时间之间的数量关系。
三、基础训练:课本第113页第1.2.3题。
四、综合训练:课本113页至114页4.5.6.7.8。
五、达标训练:3.7。
六、课堂小结:收获了哪些?还有哪些需要再学习?
课件出示问题明确知识要点。
学生练习基础上,教师点拨。
1.填空题(24%)。
(l)一次式-3中,常数项是___________.
(2)长方形的长为a厘米,宽为3厘米,则长方形的周长为____________厘米.
(3)当x=__________时,一次式-x+4的值是-4.
(4)某人骑车到外地参观,第一个小时走了x千米,第二个小时比第一小时少走3千米,则两小时内共走了_________千米.
(5)三个连续奇数,最小的一个为x,则其余两个的和为___________.
(6)甲的速度为每小时x千米,乙的速度是甲的速度的,两人同时同地出发,同向而行3小时后,他们两人间的距离为_________千米.
(7)某数的与某数的30%的和比某数小3,若设某数为x,则可得方程__________________.
(8)若某种商品的售出单价为a元,毛利润是售价的35%,则买入单价是_________元.
2.选择题。
(1)下列说法中正确的是。
(a)a是正数(b)-a是负数(c)a的.系数是1(d)-a的系数是1。
(a)x=y-2(b)2×3+1=7(c)-5=3x(d)-1=x。
(3)若方程ax+2=8x-6的解是x=-4,则a是()。
(a)160(b)(c)9(d)10。
(4)x=3是下面哪个方程的解()。
(a)5x=7+4x(b)3(x-3)=2x-3。
(c)=10(x+2)(d)4(x-2)=5-x。
(5)化简2x-2(1-x)的结果是()。
(a)3x-2(b)-2(c)4x-2(d)4x。
(6)把108册课外读物按2∶3∶4的比例分给初一(1)班、初一(2)班和初一(3)班的学生,则初一(2)班得到的课外读物为()。
3.使学生初步养成正确思考问题的良好习惯。
和难点。
课堂设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题。
例1某数的3倍减2等于某数与4的和,求某数。
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们运用一元一次方程解应用题的目的之一。
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉。
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
(2)例2的解方程过程较为简捷,同学应注意模仿。
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案。这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)。
解:设第一小组有x个学生,依题意,得。
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5.
其苹果数为3×5+9=24.
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得)。
三、课堂练习。
2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。
四、师生共同小结。
首先,让学生回答如下问题:
1.本节课了哪些内容?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(2)以上步骤同学应在理解的基础上记忆。
五、作业。
1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。
2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。
二、重点:解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。
难点:去分母法则的正确运用。
三、学习过程:(一)、复习导入1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)。
像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是(三)例题:例1解方程:解:去分母,得依据去括号,得依据移项,得依据合并同类项,得依据系数化为1,得依据注意:1)、分数线具有2)、不含分母的项也要乘以(即不要漏乘)。
练一练:见p101练习解下列方程:(1)(2)。
(3)思考:如何求方程。
小明的解法:解:去百分号,得同学看看有没有异议?
四、小结:谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。五、课堂检测:
(4)=+1(5)。
六、作业p102:3,10.
课型新授课。
教学目标1.了解与一元一次方程有关的概念,掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程。2.经历数值代入计算的过程,领会方程的解和解方程的意义。知道求方程的解就是将方程变形为x=a的形式。3.强调检验的重要性,养成检验反思的好习惯。
教学重点归纳等式的性质;利用性质解方程。
教学难点比较方程的解和解方程的异同;
教具准备天平,砝码,物体。
教学过程。
教学内容。
教师活动内容、方式。
学生活动方式设计意图一。创设情境,引入新课:1.做一做:填表:
x
1
2
3
4
5
2x+1。
教师活动内容、方式。
学生活动方式。
教学目标1.使学生掌握移项的概念,并能利用移项解简单的一元一次方程;2.培养学生观察、分析、概括和转化的能力,提高他们的运算能力。教学重点:移项解一元一次方程。教学难点:移项的概念教学方法:启发式教学教学过程:(一)情境创设(二):探索新知解方程:(1)3x-5=4.(2)7x=5x-4在分析本题时,教师应向学生提出如下问题:1.怎样才能将此方程化为ax=b的形式?2.上述变形的根据是什么?解:3x-5=4,方程两边都加上,得3x-5+5=4+5,(本题的解答过程应找多名学生分别口述,教师严格、规范板书,并请学生口算检验)解方程7x=5x-4.针对(1),(2)题的分析与解答,教师可提出以下几个问题:(1)将方程3x-5=4,变形为3x=4+5这一过程中,什么变化了?怎样变化的?(2)将方程7x=5x-4,变形为7x-5x=-4这一过程中,什么变化了?怎样变化的?我们将方程中某一项改变后,从方程的一边移到另一边,这种变形叫做移项。利用移项,我们可以将(2)题按以下步骤来书写。解:移项,得,合并同类项,得未知数x的系数化1,得(至此,应让学生总结出解诸如例1、例2这样的一元一次方程的步骤,并强调移项要变号).(三)自学例题:解方程:x-3=4-x解:移项,得和并同类项,得系数化为1练习:1(a)组(1)方程3x+6=2x-8移项后,得(2)方程2x-0.3=1.2+3x移项,得(3)下列方程变形正确的是()a若3x+2=1,则3x=3b若-x+1=0,则-x=1c若x-1=3x,则-1=3x-xd若-=o,则x=4(4)用移项法解下列方程:(a)10y+7=12y-5-3y(b)0.5x+=x+2(c)=+x(d)9+x=2x+12-4x(四):教学小结:
重点难点。
一、复习:
1.9-3y=5y+5。
2、
二、新授。
分析:这里可以把总工作量看做1。思考。
人均效率(一个人做1小时完成的工作量)为。
由x人先做4小时,完成的工作量为。再增加2人和前一部分人一起做8小时,完成的工作量为。
这项工作分两段完成,两段完成的工作量之和为。
解:设先安排x人工作4小时。
根据两段工作量之和应是总工作量,得。
去分母,得4x+8(x+2)=-1701。
去括号,得4x+8x+16=40。
移项及合并同类项,得。
12x=24。
系数化为1,得x=-243.
所以-3x=729。
9x=-2187.
答:这三个数是-243,729,-2187。
例4根据下面的两种移动电话计费方式表,考虑下列问题。
方式一方式二。
月租费30元/月0。
本地通话费0.30元/月0.40元/分。
(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?
(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?
解:(1)。
方式一方式二。
200分90元80元。
350分135元140元。
0.4t=30+0.3t。
移项,得0.4t-0.3t=30。
合并同类项,得0.1t=30。
系数化为1,得t=300。
由上可知,如果一个月内通话300分,那么两种计费方式相同。
思考:你知道怎样选择计费方式更省钱吗?
解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。
归纳:用一元一次方程分析和解决实际问题的基本过程如下。
三、巩固练习:94页9、10。
四、达标测试:《名校》55页1.2.3.
五、课堂小结:
(1)这节课我有哪些收获?
(2)我应该注意什么问题?
六、作业:课本第94页第9题学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:
(1)每一步的依据分别是什么?
(2)求方程的解就是把方程化成什么形式?
先让学生读题分析规律,然后教师进行引导:
允许学生在讨论后再回答。
在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数。
学生独立解方程方程的解是不是应用题的解。
教师强调解决问题的分析思路。
学生读题,分析表格中的信息。
教师根据学生的分析再做补充。
学生思考问题。
教师根据学生的解答,进行规范分析和解答。
最新七上数学一元一次方程的教案(精选17篇)
文件夹