2023年我当数学小老师手抄报汇总(八篇)
文件格式:DOCX
时间:2023-04-09 00:00:00    小编:厚嘴小帅

2023年我当数学小老师手抄报汇总(八篇)

小编:厚嘴小帅

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

我当数学小老师手抄报篇一

提示:
1.图片经过缩放处理,请点击图片在新窗口打开查看原图,或将图片存盘至电脑中查看。
2.本黑板报图片为网友推荐而来,版权归属原作者所有。在本站展示仅为网友借鉴、欣赏他人作品时提供方便。如有任何疑问,请与本站联系。
3.欢迎您向本站提供推荐优秀的黑板报作品。

我当数学小老师手抄报篇二

提示:
1.图片经过缩放处理,请点击图片在新窗口打开查看原图,或将图片存盘至电脑中查看。
2.本黑板报图片为网友推荐而来,版权归属原作者所有。在本站展示仅为网友借鉴、欣赏他人作品时提供方便。如有任何疑问,请与本站联系。
3.欢迎您向本站提供推荐优秀的黑板报作品。

我当数学小老师手抄报篇三

2、一个国家的科学水平能够用它消耗的数学来度量——拉奥

4、读读欧拉,读读欧拉,他是咱们大家的老师。——拉普拉斯

11、"问题是数学的心脏。——prhalmos

19、问题是数学的心脏。——prhalmos

21、到底是大师的著作,不一样凡响!——伽罗瓦

22、咱们欣赏数学,咱们需要数学。——陈省身

24、数学家实际上是一个著迷者,不迷就没有数学……——诺瓦利斯

28、整数的简单构成,若干世纪以来一向是使数学获得新生的源泉。——gd伯克霍夫(伤感网名)

30、算术是人类知识最古老,也许是最最古老的一个分支;然而它的一些最深奥的秘密与其最平凡的真理是密切相连的。

【数学手抄报资料大全:1-6年级的公式】

我当数学小老师手抄报篇四

1、数的意义:整数、自然数、小数、分数和百分数

(1) 负整数

(2) 自然数

自然数和0都是整数。 最小的自然数为0,没有最大的自然数,自然数是无限的。

没有,用0表示。0也是自然数。

(3)小数(有限小数、无限小数)

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

(4)分数(真分数、假分数、带分数)

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 (0作分母时无意义。)

(5)百分数

通常用"%"来表示。百分号是表示百分数的符号。

2、十进制计数法

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

“十进制计数法”是世界各国最常用的一种计数方法。

● 数学知识链接:古代印度人创造阿拉伯数字后,大约到公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传人的,所以便把这些数字称为阿拉伯数字。以后,这些数字又从欧洲传到世界各地。它现在已成为人们学习、生活和交往中最常用的数字了。

中国目前所知的最早的一部数学著作。《算数书》,1983年12月在湖北省江陵县张家山汉初墓葬中出土。

初步了解了上面各种数,接下来就就是数之间的运算了。数学其实就是一种游戏。

(1)比较大小

● 数的运算

在数的运算中有两个重要方面,掌握了这两个方面,数的运算就很容易了。

(1)四则运算定律

1. 加法交换律:

两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

5. 乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

6. 减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。

(2) 运算顺序

1. 小数四则运算的运算顺序和整数四则运算顺序相同。

2. 分数四则运算的运算顺序和整数四则运算顺序相同。

3. 没有括号的混合运算:同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。

4. 有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。

5. 第一级运算:加法和减法叫做第一级运算。

6. 第二级运算:乘法和除法叫做第二级运算。

有几个注意点:

(2)除和除以的区别: 都表示两个数相除但不相同,按先读的不同。

10÷5可读成10除以5,也可以读成5除10,应特别注意先读除数的读法。

计量的定义:广义的理解是有关测量知识的整个领域。计量在历史上称之为“度量衡”,随着生产和科学技术的发展,现代计量已远远超出“度量衡”的范围。现有长度、热学、力学、电磁学、无线电、光学、声学等计量专业,已形成了一门独立的学科。——计量学。计量是支撑社会、经济和科技发展的重要基础。每年的5月20日确定为“世界计量日”。

一 长度

(一) 长度是一维空间的度量。

二 面积

(一)面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。

三 体积和容积

体积,就是物体所占空间的大小。

容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

常用单位

1 体积单位:* 立方米 * 立方分米 * 立方厘米

2 容积单位 升 * 毫升

四 质量

(一)质量,就是表示表示物体有多重。

(二)常用单位* 吨 t * 千克 kg * 克 g

(三)常用换算:* 一吨=1000千克 * 1千克=1000克

五 时间

(一)常用单位:世纪、 年 、 月 、 日 、 时 、 分、 秒

* 一、三、五、七、八、十、十二是大月 大月有31 天

* 四、六、九、十一是小月小月 小月有30天

六 货币

(一)货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。

(二)常用单位:* 元 * 角 * 分

(三)单位换算 * 1元=10角 * 1角=10分

单位之间的换算,一定要注意单位统一后才能计算。

但是习惯上说光年是距离单位。

1比的意义和性质

(1) 比的意义:两个数相除又叫做两个数的比。

“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比的后项不能是零。

分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质

我当数学小老师手抄报篇五

一、要有学习数学的兴趣。

一·要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。

二·要有端正的学习态度。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。

三·上课前要预习即将学习的新知。

当前,有些学生没有注意养成预习的习惯,新课上完后,学生才知道学习了什么,这样无准备的学习,是不可能取得最佳效果的。

四、上课时要主动、灵活的思考问题。培养勤于思考与全神贯注的学习习惯。

五、要善于发现规律。

规律性措施,是指在对某一知识理解,熟知之后,找出一些规律性的东西,利用这些规律性的东西,不用深思维就能快捷识别和掌握做此类题的方法即所谓熟能生巧的那些巧方法。例如:学习分数乘除法应用题时,需要确定单位“1”,而“是”“占”相当于“比”等字后面的事物通常都是单位“1”,那么利用“是”“占”“比”等字寻找单位“1”就比较快捷。此类应用题还有一个规律,即单位“1”是已知的就是乘法题,单位“1”是未知的就是除法题,利用寻找单位“1”是已知的还是未知的来确定乘除法也比较简便快捷。

六、课后要反思总结。要学会概括和积累。及时总结解题规律,特别是积累一些经典和特殊的题目。这样既可以学得轻松,又可以提高学习的效率和质量。

怎样反思总结呢?一个章节的新知学过之后,我们可以合上课本,用自己的思路把学过的内容在脑子里按顺序细细地“过滤”一遍:本章有几节?每节是什么内容?每个内容分哪几部分?每一部分的知识重点有几个?概念有哪些?规律要点是什么?哪个地方易出错、什么地方出过错?出错原因是啥?答题时需要注意什么?每一方面都分析整理出来,并且看是否都理解清楚。也可以把学过的数学知识按照:章节主题(树干)、内容重点(枝条)、概念要点、方法规律(树叶)、容易出错需要注意的问题(花、果)的层次整理成形象的“知识树”,贴到你经常可以看到的墙上。一有时间就从树根复习到树叶。如果做到了这样的反思总结,并且学完一个章节也能及时地再复习前面整理复习过的每一个章节,可以说你已经系统的掌握了学过的数学知识。既然你已经系统的掌握了学过的所有数学知识,又挖掘了知识的内涵、拓展了知识的外延,还养成了主动、灵活思考问题的能力,你也就能够有把握地预测你未来的理想数学成绩啦。

我当数学小老师手抄报篇六

在日常学习、工作生活中,许多人都接触过一些比较经典的手抄报吧,每一份手抄报的后面都包含着编者的辛勤劳动和聪颖的智慧。你还在找寻好的手抄报吗?下面是小编帮大家整理的数学手抄报图片大全简单又漂亮,欢迎阅读与收藏。

这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

现在,阿拉伯数字已成了全世界通用的数字符。

圆形,是一个看来简单,实际上是很奇妙的圆形。

古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。

以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。

当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。

古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:"一中同长也"。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

圆周率,也就是圆周与直径的比值,是一个非常奇特的数。

《周髀算经》上说"径一周三",把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。

魏晋时期的`刘徽于公元263年给《九章算术》作注。他发现"径一周三"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。

祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。

在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。

现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。

九九歌就是我们现在使用的乘法口诀。

远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。

现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。

七岁时高斯进了 st. catherine小学。大约在十岁时,老师在算数课上出了一道难题:"把 1到 100的整数写下来,然後把它们加起来!"每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

数学的本质在於它的自由。---康扥尔(cantor)

在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔(cantor)

没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。——希尔伯特(hilbert)

数学是无穷的科学。--赫尔曼外尔

问题是数学的心脏。--

高斯(数学王子)说:“数学是科学之王”

罗素说:“数学是符号加逻辑”

毕达哥拉斯说:“数支配着宇宙”

哈尔莫斯说:“数学是一种别具匠心的艺术”

米斯拉说:“数学是人类的思考中最高的成就”

培根(英国哲学家)说:“数学是打开科学大门的钥匙”

布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”

黑格尔说:“数学是上帝描述自然的符号”

魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”

柏拉图说:“数学是一切知识中的最高形式”

考特说:“数学是人类智慧皇冠上最灿烂的明珠”

拉普拉斯说:“在数学中,我们发现真理的主要工具是归纳和模拟”

维特根斯坦说:“数学是各式各样的证明技巧”

华罗庚说:“新的数学方法和概念,常常比解决数学问题本身更重要”

纳皮尔说:“我总是尽我的精力和才能来摆脱那种繁重而单调的计算”

2、仔仔兴高采烈地从学校里回来,问妈妈:“爸爸呢?”

“为什么?”妈妈问道。

“在考数学以前,爸爸对我说‘如果考了100分,就给我1元钱,考80分给8角。’今天,我数学考了45分。“仔仔回答说。

妈妈吃惊地问:“什么!数学才考45分?”

仔仔得意地说:“是呀,数学上要四舍五入,因此,爸爸必须付5角钱。”

我当数学小老师手抄报篇七

血压:120/80

胆固醇:180

低密度脂蛋白/高密度脂蛋自:179/47

甘油三酯:189

葡萄糖:80

体温:98.7°f

在今天的医学上,我们作为病人,经受着数字和比率的轰击,它们分析我们的健康,分析我们身体的功能如何。医生们力图确定正常数值的范围。数字和数学看来到处都是。事实上,在我们的身体里,我们的心血管系统网络、被我们的身体用来引发动作的电脉冲、细胞相互联络的方式、我们骨骼的设计、基因的实际分子构造──这一切都具有数学原理。因此,在用数量表示人体功能的努力中,科学和医学就求助于数字和其他数学概念。例如,已经设计出一些仪器,把身体的电脉冲转化成正弦曲线,从而使输出得以比较。从心电图、肌电图、超声波诊断结果上显示出来的是曲线的形状、振幅和相移。所有这些对于受过训练的技术人员都是资料。数字、比率和坐标图是数学适用于我们身体的一些方面。让我们考察另外一些数学概念,看看它们是怎样与身体相联系的。

如果你认为把密码和玛雅象形文字译解出来是富有刺激性和挑战性的,你可以想像自己能解开被身体用于通信的分子密码。目前科学已经发现白血球与大脑相联系。身心之间通过许多生物化学制品的总汇互相联络。译解这些细胞间的通信密码,将对医学产生惊人的影响,正像我们增加了对遗传密码的了解,正在揭示健康领域的许多细节一样。dna中双螺旋线的发现是另一个数学现象。但是螺旋线并不是存在于人体中的唯一的螺线。等角螺线存在于许多关于生物生长的领域──可能因为它的形状不随生长而改变。你可以在你头上的头发、你身上的骨头、内耳的耳蜗、脐带,甚或你的指纹印迹的生长模式中找寻等角螺线。

身体的物理学和物理性质也导致其他数学概念。身体是对称的,这有助于使它获得平衡和重心。脊柱的三条曲线除了实现平衡外,在健康方面和使身体获得体力以抬起自己的体重及其他负载方面都很重要。艺术家们例如伦纳多?达?芬奇和阿尔布雷希特?丢勒都试图表明身体符合各种不同的比例和量度,例如黄金分割。

听起来可能令人惊讶的是,混沌理论在人体中也有它的位置。例如,在心律不齐的领域,正在研究混沌理论。对于心搏以及使某些人的心搏不正常的原因的研究说明,心搏看来是符合混沌概念的。此外,脑和脑波的功能以及脑失调的治疗也与混沌理论有关。

在分子层次上研究人体,我们发现了数学的迹象。在侵入人体的各种病毒的形状和形式中,存在着几何形状,例如各种多面体和网格球顶结构。在艾滋病病毒(htlv-1)中,发现了二十面体对称和一个网格球顶结构。dna构形中的纽结点已经促使科学家们用纽结理论中的数学发现去研究由dna链所形成的环和纽结。纽结理论中的发现和来自各种不同几何学的概念已经被证明为遗传工程研究中的无价之宝。

科学研究与数学的结合,对于发现人体奥秘和分析人体功能来说,是必要的。

我当数学小老师手抄报篇八

提示:
1.图片经过缩放处理,请点击图片在新窗口打开查看原图,或将图片存盘至电脑中查看。
2.本黑板报图片为网友推荐而来,版权归属原作者所有。在本站展示仅为网友借鉴、欣赏他人作品时提供方便。如有任何疑问,请与本站联系。
3.欢迎您向本站提供推荐优秀的黑板报作品。
猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制