高中数学课件实用实用
文件夹
在工作和生活中,总结可以帮助我们发现问题、改进方法,并取得更好的效果。写总结时要注意语法和用词,避免低级错误和不当表达。这些总结范文涵盖了不同领域和不同阶段的总结,希望对大家有所启发。
集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.
函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.
二、学情分析。
1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.
2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.
3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.
三、设计思路。
本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.
四、教学目标分析。
(一)知识与技能。
1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.
a:能从集合间的运算分析出集合的基本关系.b:对于分类讨论问题,能区分取交还是取并.
2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.
a:会用定义证明函数的单调性、奇偶性.b:会分析函数的单调性、奇偶性、对称性的关系.
(二)过程与方法。
1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.
2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.
(三)情感态度与价值观。
在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.
五、重难点分析。
重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.
难点:含参问题的讨论,函数性质之间的关系.
六.知识梳理(约10分钟)。
提出问题。
问题1:把本章的知识结构用框图形式表示出来.
问题3:类比两个数的关系,思考两个集合之间的基本关系.类比两个数的运算,思考两个集合之间的基本运算,交、并、补.
问题4:通过本章学习,你对函数概念有什么新的认识和体会吗?
请结合具体实例分析,表示函数的三种方法,每一种方法的特点.
问题5:分析研究函数的'方向,它们之间的联系.
在前一次晚自习上,学生相互展示自己的结果,通过相互讨论,每组提供最佳的方案.在自己的原有方案的基础上进行补充与完善.
学生回答问题要点预设如下:
1.集合语言可以简洁准确表达数学内容.
2.运用集合与对应进一步描述了函数的概念,与初中的函数的定义比较,突出了函数的本质函数是描述变量之间依赖关系的重要数学模型.
3.函数的表示方法主要有三种,这三种表示方法有各自的适用范围,要根据具体情况选用.
4.研究函数的性质时,一般先从几何直观观察图象入手,然后运用自然语言描述函数的图象特征,最后抽象到用数学符号刻画相应的数量特征,也是数学学习和研究中经常使用的方法.
设计意图:通过布置任务,让学生充分的认识自己在学习的过程中,哪些知识学习的不透彻.让学生更有针对的进行复习,让复习进行的更有效.让学生体会到知识的横向联系与纵向联系.通过类比初中与高中两种函数的定义,让学生体会到两种函数的定义本质是一样的.
七、易错点分析(约3分钟)。
问题6:集合中的易错问题,函数中的易错问题?主要是作业、训练、考试中出现的问题?
(任务提前布置,由课代表汇总,并且在教学课件中体现.教师不进行修改,呈现的是原始的)。
教师展示学和成果并进行点评.
对于问题6主要由学生讨论分析,并回答,其他学生补充.这个过程尽量由学生来完成,教师可以适应的引导与点评.
设计意图:让学生学会避开命题者制造的陷阱,通过不断的分析,让学生了解问题出现的根源,充分暴露自己的思维,在交流与合作的过程中,改进自己的不足,加深对错误的认识.通过交流了解别人的错误,自己避免出现类似的错误.
八、考察点分析(约5分钟)。
问题7:分析集合中的考察点,函数中的考察点.
问题8:知识的横纵联系.
学生回答问题要点预设如下:
1.集合中元素的互异性.
2.,则集合a可以是空集.
3.交集与并集的区分,即何时取交,何时取并,特别是含参的分类讨论问题.
4.函数的单调性与奇偶性的证明.
5.作业与试卷中出现的问题.
6.学生分析本章的考察点,主要分析考察的知识点、思想方法等方面.
设计意图:让学生了解考察点,才能知道命题者的考察意图,才能选择合适的知识与思想方法来解答.例如如果试题中出现集合,无论试题以什么形式出现,考察点基本是集合间的基本关系、集合的运算.
九、典型问题分析。
例1:设集合。
(1)若,求实数的值;。
(2)若,求的值;。
(3)若,求的值.教师点评,同时板书.
(1)答案:或;。
(2)答案:或;。
(3)答案:.
由学生分析问题的考察点,包括知识与数学思想.(预设有以下几个方面)从知识点来分析,这是集合问题.考察点主要为集合的表示方法、集合中元素的特性、集合间的基本关系、集合的运算等.学生在解第1个问时,可能漏掉特殊情况.第2、3问可能会遇到一定的障碍,可以给学生时间进行充分的思考.
设计意图:让学生体会到分析考察点的好处,养成解题之前分析考察点的习惯.能顺利的找到问题的突破口,为后续的解答扫清障碍.通过一题多问、一题多解、多题归一,让学生主动的形成发散思维,主动应用转化与化归的思想.
例2:已知函数是定义在r上的奇函数,当时,求函数的解析式.
变式:函数是偶函数。
教师对生回答进行点评.并板书.
学生分析考察点、解题思路,如果不完善,其他学生补充.
学生回答问题要点预设如下:
1.考察点为函数的奇偶性与函数图象的关系.
2.函数的奇偶性的定义.
3.转化与化归的思想.
法一:本题即求,函数的解析式,可先利用函数的奇偶性绘制函数的图象,把本题转化为二次函数的图象与解析式的问题.
法二:本法更具有一般性,已知。
时,函数的解析式,要分析时的函数对应关系,即当一个数小于零时,函数值应当怎样计算.由于函数具有奇偶性,即一个数与它的相反数的函数值之间有关系,,所以可以研究的函数值.
设计意图:学生在思考的过程中,体会数形结合思想.函数的奇偶性与函数的图象的关系,可以根据奇偶性绘制函数图象,也可以通过函数的图象分析函数的奇偶性,两者是相辅相承的.体会转化与化归的思想,把要研究的转化为已知的.考察函数的单调性的证明,函数的奇偶性与单调性之间的关系,体会知识的纵向联系.体会转化与化归的思想、特殊与一般的数学思想,让学生体会到问题后面隐含的本质.
例3:已知是偶函数,而且在上是减函数,判断在上是增函数还是减函数,并证明你的判断.
变式1:函数为奇函数。
变式2:你能分析奇函数(偶函数)在对称区间上的单调性的关系吗?试从数形两个方面来分析.
学生分析考察点、解题思路,如果不完善,其他学生补充.
学生回答问题要点预设如下:
1.考察点为函数的奇偶性与单调性的关系.
2.函数的单调性的定义.
3.数形结合、转化与化归的思想.
法一:通过函数的图象分析.
法二:把要研究的范围转化为已知的范围.
设计意图:明确函数的性质是一个有机的整体,不是一个个知识点的简单罗列.同时体会知识的纵向联系与横向联系,在第二个方法中进一步感受转化与的思想.通过两个变式的研究过程,学生体会研究探索性问题的一般思路,即通过特殊情况分析结果,再对结果的正确性进行证明.
例4:求在区间上的最大值和最小值.
变式:在区间上的最大值是1,求的值.
教师用几何画板演示,二次函数对称轴的变化对函数的最值的影响.
答案:时,最大值是,最小值是;时,最大值是,最小值是;时,最大值是,最小值是;时,最大值是,最小值是.
变式答案:或.
学生通过直观的演示,思考问题的考察点与解答策略.
学生回答考察点分析(预设):
1.二次函数的图象与性质.
2.分类与整合.
3.逆向思维.
学生回答解题思路分析(预设):
研究二次函数的对称轴方程与所给的区间的关系.
设计意图:通过几何画板的动态性,给学生直观的感知,从而建立最近发展区,进而突破难点.
通过对二次函数的研究,学生巩固了上位知识函数的图象与性质,充分体会数形结合的优势.学生在解答变式的过程中,体会逆向思维与正向思维的关系,体会函数与方程思想,感受到动静结合.
十、课后小结。
1.知识网络。
2.知识的来龙去脉。
4.分析问题的基本思路。
学生总结,教师板书.
设计意图:让学生把知识窜串,形成网络,能迅速而准确的选用知识来解答问题.
十一、课后总结。
巩固所学,补充课上的不足.主要是本节课中没有涉及的问题,本节课中理解有困难的问题.
1.已知是定义在r上的函数,设,.
(1)试判断的奇偶性;(2)试判断的关系;。
(3)由此你猜想得出什么样的结论,并说明理由?
2.设函数,,
(1)讨论的奇偶性;(2)求的最小值.
3.已知集合,,
是否存在实数同时满足.
十二、教学反思。
在复习课中,教师要充分调动学生学习的自主性,让学生独立制定出适合自己的知识结构、整理出自己在本章学习中出现的问题.在课堂上,学生通过交流与合作,体会解决问题成功的喜悦.从而养成良好的学习习惯、树立信心.感受知识的横向联系与纵向联系,洞悉知识的本质、问题的根源,从而形成深刻的印象,少出现或避免出现类似的问题.通过分析知识的来龙去脉,明确知识的用途.通过典型题分析,回顾主干知识,重要的数学思想,感受知识与数学思想的有机融合.
一个老生常谈的话题,也是提高学习方法必须的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。有了不会的知识,就要有必须“灭”了他的决心!
记笔记。
这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头嘛,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。
同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。
涉猎课外习题。
想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。
学会归类总结。
学习数学要记得东西很多,尤其是数学公式,而且知识还很散,通常解一道题需要各种公式的配合,如果单纯的记忆每个公式,不但增加记忆量,而且容易忘,此时我们必须学会归类总结,把经常搭配使用的公式等总结在一起记忆,这样会大大的减少我们的记忆量,同时提高我们做题效率(因为公式都绑在一起了呀)。
建立纠错本。
我们在学习数学的时候可能会经常因为同样一类题目而失分,自己也十分懊恼,其实有办法可以解决这个问题,就是建立纠错本,帮我们经常会出错的题目都集中在一起(当然只要是做错过得都可以记录上),然后空闲的时候看看,考试之前再看看,这样考试的时候出现同类题目再出错的几率就降低好多。
考试总结。
写考试总结是一个好习惯,考试总结可以帮我们找出学习之中不足之处,以及我们知识的薄弱环节,从而及时的弥补不足,以及以后的学习方向。
培养学习兴趣。
又是一个老话题了,今天中一君好像讲了很多“废话”,虽然情况确实也是如此,但是中一君仍然要讲,兴趣是最好的老师(又是废话),只有有了兴趣,才会自主自发的进行学习,学习的效率才会提高。当然建立兴趣不是一件容易的事情,怎样才能对数学产生兴趣还需自己去发掘,如果实在不能产生兴趣,只有掌握以上学习方法了。
标题的后给出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结。
(六)概括升华。
三角函数的诱导公式口诀:即“奇变偶不变,符号看象限”。
简便记忆公式。
(七)练习强化。
求下列三角函数的值:(1)sin(-1000);(2)co.
本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯。这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的。
学生练习。
化简:(例题)。
重点加强对三角函数的诱导公式的综合应用。
(八)小结。
1.小结使用诱导公式化简任意角的三角函数为锐角的步骤。
2.体会数形结合、对称、化归的思想。
3.“学会”学习的习惯。
(九)作业。
1.课本p-27,第1,2,3小题;
2.附加课外题略。
加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”。
(十)板书设计:(略)。
教学目标:
1、在实践活动中认识奇数和偶数,了解奇偶性的规律。
2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。
3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:
探索并理解数的奇偶性。
教学难点:
能应用数的奇偶性分析和解释生活中一些简单问题。
教学过程:
一、游戏导入,感受奇偶性。
1、游戏:换座位。
首先将全班45个学生分成6组,人数分别为5、6、7、8、9、10。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。
(游戏后学生发现6人、8人、10人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)。
2、讨论:为什么会出现这种情况呢?
学生能很直观的找出原因,并说清这是由于6、8、10恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。
(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)。
3、小结:交换位置时两两交换,刚好都能换位置,像6、8、10……是2的倍数,这样的数就叫做偶数;而有人不能与别人换位置,像5、7、9……不时的倍数,这样的数就叫做奇数。
学生相互举例说说怎样的.数是奇数,怎样的数是偶数。
二、猜想验证,认识奇偶性。
1、设置悬念、激发思维。
2、学生猜想、操作验证。
学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。
汇报成果:
奇数﹢奇数=偶数奇数-奇数=偶数奇数+奇数+……+奇数=奇数。
奇数个。
偶数+偶数=偶数偶数-偶数=偶数奇数+奇数+……+奇数=偶数。
偶数个。
奇数+偶数=奇数奇数-偶数=奇数偶数+偶数+……+偶数=偶数。
你能举几个例子说明一下吗?
(学生的举例可以引导从正反两个角度进行)。
3、深化。
三、实践操作、应用奇偶性。
我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。
学生动手操作,发现规律:奇数次朝下,偶数次朝上。
你手上只有一个杯子怎么办?(学生:小组合作)。
学生开始动手操作。
反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。
引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。
学生动手操作,尝试发现。
交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。
学生再次操作,感受过程,体验结论。
3、游戏。
学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么?
生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。
是呀,这是老师在街上看到的一个骗局,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?学生自由说。
四、课堂小结,课后延伸。
1、说说我们这节课探索了什么?你发现了什么?
请同学们课后去尝试探索这个命题,可以独立思考,也可以找人合作。
教学目标:
1、理解流程图的选择结构这种基本逻辑结构。
2、能识别和理解简单的框图的功能。
3、能运用三种基本逻辑结构设计流程图以解决简单的问题。
教学方法:
1、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。
2、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。
教学过程:
一、问题情境。
情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为。
其中(单位:)为行李的重量。
试给出计算费用(单位:元)的一个算法,并画出流程图。
二、学生活动。
学生讨论,教师引导学生进行表达。
解算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费。
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6。
在上述计费过程中,第二步进行了判断。
三、建构数学。
1、选择结构的概念:
先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行。
2、说明:
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。
3、思考:教材第7页图所示的算法中,哪一步进行了判断?
数学是学习专业课和提高文化素养的基础科学。职业高中数学教学的目的是:一方面为学生学习专业课提供必要的数学工具;另一方面是为提高学生素质服务。
一、课前教案。
一般是开学前的较长时间内,它与制定教学计划完全不同。它是对教学计划的深化与拓展,它要求教师做到:
1、认真研究教学大纲,了解全学年的教学内容,前学期与后学期教材的衔接,明确目的和重点,疏通各章节知识,了解各部门内容的来龙去脉。
2、了解所教专业班需要数学为其提供哪些基础知识与工具,根据专业的特点和需要,来增加补充或调节某些章节的顺序,充分为专业课服务。
3、根据教学规律,认真研究学生学习情况,根据内外因原理、矛盾原理、量变与质变关系,感性认识与理性认识等关系去指导备课职业高中数学教学计划职业高中数学教学计划。注意这些原理与数学学科的关系,进而把它用到数学教学中,使唯物辩证法原理渗透到学年的教学中。教师经过大量的学习与研究,写好课前教案,就能使本学年的教学心中有数,有的放矢。
二、课上教案。
一般在上课前进行,它要教师:
1、以教科书为依据,根据教材的科学性、思维性、整体性,明确本节内容与其它章节的联系,分清知识的本末主次与因果关系。
2、教学目的要明确,让学生掌握哪些基础知识,基本技能与技巧,培养哪些能力,培养运用哪些唯物辩证法基本原理。
3、要了解本节内容的学习学生要复习哪些旧知识,了解所教内容在今后的学习和实践中的应用,同时要了解这节内容与所学专业课之间的联系。
4、对教学重点要抓得准,讲得透,因为只有这样才能“脉络”明显,结论明确。要充分估计难点,备课时要考虑如何运用直观、具体抽象分散难点,各个击破。应用“去粗取精,去伪存真,由此及彼,由表及里”的原理,使学认识由感性上升到理性,进而突破难点,扫清障碍。
5、依据教材内容与特点,科学地确立课堂类型与教学方法。认真分析范例,不能只停留在会做的水平上,对补讲的例题也要作妥善安排。经常要进行自我训练。每节习题,每章复习题都要熟悉它的解法,了解它的难易程度,力求把解题要领、规律与简捷途径告诉给学生。
6、注重他教与多媒体教学,适当深入浅出地渗透现代教学观点。
三、课后教案。
一般是在一节课后或一章后进行。它要求教师在课后认真总结经验教训,成效得失,把心得体会写下来,写好课后教案好处有:
1、是教师深刻钻研教材的好形式。教师钻研教材主要靠备课,课备得好坏主要靠课堂教学实践来检验。通过写课后教案检查自己对教材的学习与研究情况,教学目的是否明确,教学重点是否突出教材的关键点是否抓得准确。写课后教案实质上是更深钻研教材、理解教材。
2、写好课后教案有助于改进教学方法,提高教学艺术水平。教完每节课后,检查一下教学效果,回忆一下教学方法是否恰当,是否有启发性,是否符合学生的具体情况。通过分析,把具体的教学实践提高到教学理论加以认识。从中找出规律,改进教学方法,不断提高授课水平。
3、写好课后教案是积累教学经验的好方法。科学家丰富渊博的知识靠一点一滴长期积累起来,所有成功的优秀教师也特别注重教学经验的长期积累,如果边教边忘,教学时间再长也最多不过是简单的重复,不会有提高。通过多年的教学探讨与教学实践,我认为备课中如注重了这三种教案,就可以提高课堂教学效果,进而使学生在知识能力方面获得大面积的丰收练。每节习题,每章复习题都要熟悉它的解法,了解它的难易程度,力求把解题。
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注意参透教学思想和方法,针对学生实际,不断研究数学教学,改进教法,指导学法。
数学目标要求。
1、理解集合及充要条件的有关知识,掌握不等式的性质,一元二次不等式、绝对值不等的解法,掌握函数的概念及指数函数,对函数和幕函数的性质和图象。
3、理解数列的概念,掌握等差数列和等比数列的性质,并会求等差数列、等比数列前n项的和。
4、掌握平面向量时有关概念和运算,掌握直线和圆的方程的求法。
5、掌握空间几何直线、平面之间的位置关系及其判定方法。
6、掌握概率与统计初步里的计数原理,理解三种抽样方法,会求简单问题的概率。
二、教学建议。
1、深入钻研教材职业高中数学教学计划职业高中数学教学计划。以教材为核心,深入研究教材中章节知识的内外结构,熟练掌握知识和逻辑体系,细致领悟教材改革的精髓,逐步明确教材教学形式,内容和教学目标的影响。
2、准确吧握新大纲。新大纲修改了部分内容的教学要求层次,把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上要重视数学应用;重视教学思想方法的参透。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施材,以学生为账户提,构建新的认识体系,营造有利于学生的氛围。
5、加强课堂研究,科学设计教学方法职业高中数学教学计划工作计划。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方亲切合作,交流互动,让学生感受、理解知识的产生和发展的过程。根据材料个章节的重难点制定教学专题,积累教学经验。
6、落实课外活动内容,组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。
1-4复习初中知识和集合。
4-6平面向量。
5充要条件。
6-7不等式。
7-9直线的方程。
8-10函数。
10期中考试。
11期中考试。
9-20总复习与期末考。
教学目标:
1、把图形进行分类整理,并认识图形的类别特征。
2、动手实践,体会平行四边形和三角形的性质。
3、通过直观操作来感受和体验各种图形的性质。
教学重点:把图形进行分类整理,并认识图形的类别特征。
教学难点:动手实践,体会平行四边形和三角形的性质。
教学过程:
一、创设情境,谈话引入。
师:同学们,我们已经认识了一些图形,现在一齐来回忆一下,都有哪些图形。(教师让学生说说桌面上的图形)。
二、探索新知,小组学习。
师:这些图形现在准备要搬家了,我们可以根据图形的特征帮助它们分类搬进这两间屋子里吗?(小组讨论,并说说理由)。
生:按立体图形和平面图形来分。生:按图形是否有角来分。……。
师:你们都说的很好,看看我们的好朋友淘气是怎样分的。他也和我们一样把立体形和平面图形分开。但这时平面图形有话要说了,嗯,我们听听他们说些什么。
课件说:我们的屋子里有两间房子,你们可以把我们进行分类看看住哪间房子吗?
师:既然平面图形这样说了,我们的同学可以帮帮它把桌面上的平面图形再次分类吗?
生:按图形是否线段围成来分。生:按图形是否圆来分。
师:同学们真厉害,在这么短时间就帮平面图形解决这么多难题。
课件说:aaa等等,杨老师,我还有一个问题说同学们帮帮我啊!
师:啊!你还有问题呀,同学们,帮不帮他好呢?生:帮。
师:那你快说呀?
课件:你们已经帮我们分了房间,但是要两个图形睡一张床呀!你们可以再帮我们分类吗?
师:既然这样我们就帮帮它吧?翻开书本第22页,用铅毛把这四个图形进行分类画在圈里。
生:我是按它是否直角来分。
三、联系生活,探索图形特点。
师:再看看这一幅电动铁门是什么图形。生:平行四边形。
师:其实在我们生活中很多运用了三角形和平行四边形。谁可以说说你在哪里见过呢?(小组讨论)。
生:窗口是平行四边形生:红领巾是三角形。
师:哪三角形和平行四边形你们喜欢哪一个呢?利用桌面上的小棒拼出你喜欢的图形。(找一个拼三角形的学生)。
师:这位同学是拼成三角形的,你可以把这三角形的边拉一拉吗?你发现了什么?
生:我发现这个图形具有稳定性。
师:还有没有同学拼其它图形的。(找一个拼四边形的)。
师:你可以把这个平行四边形的对角拉一拉吗?你发现了什么?
生:一拉就变形了。所以四边形具有不稳定性。
师:噢,原来是这样子的.,那老师给多一条棒给你可以把这个平行四边形固定起来,让它不变形吗?说说理由。
生:我在中间多加一条棒它就不会动了。因为形成三角形就具有稳定性。
生:不是,因为……。
四、课堂小结。
今天的课已经上完了,上这节课上得开心吗?哪开心我就要问一下你们,你觉得这节课掌握了什么知识呢?你觉得哪一个小组表现最好,好在哪里呀!
今天我们学习了按图形的特征进行分类,希望同学们以后遇到这些图形都可以找出它的特点。最后谢谢各位同学帮助图形搬了一间舒适的家。
高中数学课件实用(实用8篇)
文件夹