数学立体几何解题技巧初中
文件夹
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的'直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
1.与证明线段的和、差、倍、分思路相同。
2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
1.对角互补的四边形的顶点共圆。
2.外角等于内对角的四边形内接于圆。
3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
4.同斜边的直角三角形的顶点共圆。
5.到顶点距离相等的各点共圆。
对于做历年试题、模考题能考60分,目标分数是90分的同学来说,梳理知识点很关键,因为考60分说明知识点没掌握好。数学科目中固定的公式其实没有同学们想象得那么多,一口气背下来,做题就会顺利很多。
那些现在能考八九十分,努力要拿下120分的同学,一般缺乏的是知识框架和条理。考生可把数学大题的每一道题作为一个章节,自己或者找老师把每章节的知识脉络捋顺。在这个基础上,再试着总结每道大题常考的几种题型。例如,数列题基本上第一问求通项公式(记住求通项公式常用的几种办法),第二问求前n项和(通常裂项相消或错位相减)或者数列的证明(包括不等式证明)。这样做题的时候大部分的内容就都了然于胸。只是要符合总结的框架套路的题,都是可以直接秒刷的,所花费的时间是用来计算、写字的。能做到这样,120分就不在话下了。
其实要拿到120分并不难,只要分配好各种题型的丢分就可以了。选择加填空最多错3个,这个可以通过训练达到,因为大部分的题都是固定的。一般来说,有集合的题(称之为“简单送分的)、向量的题(送分的)、充分必要条件的题(送分的)、复数的题(送分的),立体几何三视图还原求体积表面积的题(经过训练就是送分的),有的省份还有线性规划的题(经过训练也是送分的)。当你总结出题目的出题策略时,答题就变得很简单了。
关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。至于解析几何,按照套路去写,有的题写着写着就有思路了。导数如果想出难题也可以非常难,但想拿满分也是很困难的。所以建议同学这两道题上可以丢一些分。总结下来,小题部分,15分可以丢;大题部分,丢分尽量控制在15分的范围内。
分数达到120+的同学,知识框架应该有了,做题的套路也有一些了。那么怎么提高?可以从上述丢分的地方抢分,把选填的分数拿到,把标准提高到最多错一个;大题部分就在丢分那两道题里再找提高的空间。考生要注意,这个时候前4道大题基本是不可再丢分的,否则就永远陷在120+的循环里出不来,最后都不知道该补哪一块了。
现在数学140+,努力奔向150的同学们,只有一个建议——好好学英语、语文或其他科目去吧,你们的提升空间不在数学上。
我们先来分析一下解析几何高考的命题趋势:
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。
(2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:
①求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点问题(含切线问题);
③与曲线有关的最(极)值问题;
④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数量特征;
(3)能力立意,渗透数学思想:如2000年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。
在近年高考中,对直线与圆内容的考查主要分两部分:
(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;
②对称问题(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离。
以及其他“标准件”类型的基础题。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。
预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。
相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
(3)关于直线与圆及圆锥曲线的位置关系的问题。
选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现。解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视。
请同学们注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质。从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫。参数方程是研究曲线的辅助工具。高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。
几何概型
【考点分析】
在段考中,多以选择题和填空题的形式考查几何概型的计算公式等知识点,也会以解答题的形式考查。在高考中有时会以选择题和填空题的形式考查几何概型的计算公式,有时也不考,一般属于中档题。
【知识点误区】
求几何概型时,注意首先寻找到一些重要的临界位置,再解答。一般与线性规划知识有联系。
【同步练习题】
1.已知函数f(x)=log2x,若在[1,8]上任取一个实数x0,则不等式1≤f(x0)≤2成立的概率是。
解析:区间[1,8]的长度为7,满足不等式1≤f(x0)≤2即不等式1≤log2x0≤2,解答2≤x0≤4,对应区间[2,4]长度为2,由几何概型公式可得使不等式1≤f(x0)≤2成立的概率是27。
点评:本题考查了几何概型问题,其与线段上的区间长度及函数被不等式的解法问题相交汇,使此类问题具有一定的灵活性,关键是明确集合测度,本题利用区间长度的比求几何概型的概率。
2.在区间[-3,5]上随机取一个数a,则使函数f(x)=x2+2ax+4无零点的概率是。
解析:由已知区间[-3,5]长度为8,使函数f(x)=x2+2ax+4无零点即判别式δ=4a2-16<0,解得-2点评:本题属于几何概型,只要求出区间长度以及满足条件的区间长度,由几何概型公式解答。
学好立几并不难,空间想象是关键。点线面体是一家,共筑立几百花园。
点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。
空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。
判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。
要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。
已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。
判定线和面垂直,线垂面中两交线。两线垂直同一面,相互平行共伸展。
两面垂直同一线,一面平行另一面。要让面与面垂直,面过另面一垂线。
面面垂直成直角,线面垂直记心间。
一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。
空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。
引进向量新工具,计算证明开新篇。空间建系求坐标,向量运算更简便。
知识创新无止境,学问思辨勇攀登。
多面体和旋转体,上述内容的延续。扮演载体新角色,位置关系全在里。
算面积来求体积,基本公式是依据。规则形体用公式,非规形体靠化归。
展开分割好办法,化难为易新天地。
(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角:
①平移法:②补形法:③向量法:
(2)直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角:
①平面角的作法:
(i)定义法;
(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:
(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;
(ii)射影面积法;
(iii)向量夹角公式。
(1)求点到直线的距离:
经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:
一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:
一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。
只能应用“老方法”,求出球的半径即可。
(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。
(2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。
(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。
①弄清问题。
也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。
②拟定计划。
找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。
③执行计划。
以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。
④回顾。
对所得的结论进行验证,对解题方法进行总结。
0>
数学立体几何解题技巧初中(4篇)
文件夹