2023年人教版六年级下册数学百分数教案八篇(优质)
文件格式:DOCX
时间:2023-04-10 00:00:00    小编:万众创薪

2023年人教版六年级下册数学百分数教案八篇(优质)

小编:万众创薪

作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么教案应该怎么制定才合适呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。

人教版六年级数学百分数教案篇一

1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题 ,提高解决实际问题的能力。

2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

本金、利息、利率的含义。

计算定期存款的利息。

一、师生交流

课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。

师:同学们到银行去调查利率并了解有关储蓄的知识。哪个小组愿意和大家交流你们的调查情况。

让学生汇报调查的情况,并出示课本的银行存款利率表。

师:同学们真了不起,了解了这么多。大家知道,钱存进银行里,不但能支援国家建设,还能得到利息。怎样存能得到的利息多一些呢?下面老师和大家一起来探讨。

二、探讨新知

1、计算公式

师:我们去银行存钱,存进银行的钱,叫做本金。取款时银行多付的钱叫做利息。利息占本金的百分比叫做利率。银行存款的利率,国家会根据经济发展的情况有所调整,大家调查的银行的利率和我们书上的银行的利率,比较一下就会发现不同。

利息的多少由存款的多少、利率的高低和存款的时间的长短有关系。

请学生讨论利息的算法,老师适当的提示。

板书 利息=本金×利率×时间

全班齐读公式。

师:要求利息就必须要知道什么?

2、计算利息

师:笑笑和淘气知道你们会计算利息的方法,想请你们帮他俩算一算,他们可以得多少利息,你们愿意不愿意帮啊?下面我们一起来算。

出示题目:

笑笑说:300元压岁钱在银行存一年其整存整取,到期时有多少利息?

怎样算?淘气呢?

学生回答后,师板书。

笑笑得到的利息:300×2.52%×1=7.56(元)

淘气得到的利息:300×3.69%×1=33.21(元)

师:笑笑和淘气存同样多的钱,因为存的时间长短不同,利率也就不同,所以得到的利息也不同。

师:同学们在调查中看到了利息税,从1999年11月1日起,个人在银行存款所得利息应纳税,这就是利息税。国家将这部分税收用于社会福利事业。从1999年11月1日至20xx年8月14日,利息税是利息的20%,20xx年8月15日至20xx年10月7日,利息税是利息的5%,从20xx年10月9日起,免收利息税。如无特殊说明,今后我们在计算时不要求计算利息税。

三、巩固练习

先让学生自己计算,在全班讲评。

先提醒学生说出保险金额、年保险费率的含义,再让学生计算。

四、课后总结

如果把它存到银行,该怎样存呢?

建议学生课后亲自到银行存一次钱。

2、这节课你学到了哪些知识?

五、布置作业

人教版六年级数学百分数教案篇二

教科书第61——62页,练习十七第1——4题

本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。

这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关。

正确理解比的意义。

1、通过实物及学过的关系式等概括出比的意义,用讲授法讲解说明两个数的比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。

2、举例说明比值的求法,以以及比和除法的联系。

;常分米,款分米的红旗一面,投影仪一、复习引入。

1、出示红旗。

讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?

引导学生回答:

要表示红旗的长和宽的关系,可以求长是宽的几倍,或者宽是长的几分之几。

板书;3÷2=3/2……长是宽地3/2。

2÷3=2/3……宽是长到2/3。

二、探究新知。

1、导入新课。

导语:(教师自备)

板书:比

2、教学比难道意义。

1、)红旗长和宽的关系,也可以这样说:

长和宽的比是2 比3,

宽和长的比是2比3 。

2、)出示投影片:

“一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?”

求汽车路程和时间的比是:100比2。

3、)学生讨论比的意义。

4、)教师小结:两个数相除又叫做两个数的比。

3、教学比的读写法,各部分的名称及求比值的方法。

1、)比的写法:3比2 记作3 :2。

2比3 记作2 :3。

100比2 记作 100 :2。

2、)比的读法。

3、)比的各部分的名称:

3 :2 =3÷2 =3/2

||| |

前项 比号 后项 比值

4、)比值;

比的前项除以后项所得的商,叫做比值。

说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。

比的后项不能0。

4、做教科书第62页上半部分的“做一做”的题目。

5、教学比与除法、分数的关系。

6、做教科书第61页下半部分的“做一做”的题目。

三、巩固练习:

1、做练习十七的第1题。

2、做练习十七的第2、3题。

四、课堂小结:

同学们,这节课我们学到了什么知识?如何求比值?

人教版六年级数学百分数教案篇三

教学目标

使学生在具体情境中初步理解东偏北(南)、西偏南(北)等方向的含义,会用方向和距离描述物体的位置,初步感受用方向和距离确定物体位置的科学性和合理性。进一步培养学生观察能力、识图能力和有条理地进行表达的能力,发展空间观念。

教学重难点

重点:通过解决实际问题,使学生体会确定位置在生活中的应用,了解确定位置的方法;在情境中学生能根据方向和距离确定物体的位置,并描述简单的路线图。

难点:通过解决实际问题,使学生能根据方向和距离确定物体的位置,并能描述简单的路线图。

教学过程

一、设置情景,导入新课

请看《龟兔赛跑续集》

观看龟兔赛跑图片,导入课题。

带着这两个问题,

我们来学习今天的新课:位置

同学们,我们已经学习了哪些方位?生:东,南,西,北四个方位。还有呢?生:东南,西南,东北,西北。我们已经学习了8个方位。课件出示。

二、自主探究,合作交流

每年我国的沿海地区都会受到台风的侵扰。瞧,这是某年的一个强台风位置图,请测算一下。

(一)教学例1

1. 现在台风中心的位置。(课件出示)

目前台风中心位于a市东偏南30°方向、距a市600km的洋面上,正以20千米/时的速度沿直线向a市移动。

台风大约多少个小时后到达a市?

4.还要预告什么?(距离)

(距离600千米)如果没有距离又会怎样?

7.练习:完成教科书第20页的做一做。

先让学生独立完成,让学生操作中经历知识的形成过程,然后集体订正。

(二)教学例2

1.课件出示:台风到达a市后,改变方向向b市移动。受台风影响,c市也将有大到暴雨。 b市位于a市北偏西30°方向、距离a 市200km。c市在a市正北方,距离a市300km 。请你在例1的图标中标出b市、c市的位置。

2.怎样表示距离呢?

先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说到,老师可以进行引导:你们打算怎样在图上表示出200km?从而帮助学生确定比例尺,和图上距离。用1cm表示100km比较合适。

3.学生独立完成,集体订正。

通过刚才的学习,你觉得怎样确定物体的位置?

教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

根据方向和距离可以确定物体所在的位置。

6.练习:完成教科书第21页的做一做,打开课本第21页的做一做:

(1)有关信息:

教学楼在校门的正北方向150米处。

图书馆在校门的北偏东35度方向150米处。 体育馆在校门西偏北40度方向200米处。

(2)师:要在平面图上准确地标出一个地方的位置,你认为需要考虑哪几个方面? (3)师生共同梳理: a.先确定好平面图的中心。 b.确定方向和距离。

(4)自主操作,独立绘制平面图。

(5)指名展示交流,完善绘图过程。

学生展示绘制的图,并演示过程,其他学生评议补充。

三、知识反馈,巩固应用

看来同学们对本届的知识掌握的还不错。现在你们有勇气来挑战自我吗?

课件出示:

1、警察局收到卧底送来的示意图

(1)犯罪分子1在警察局的( )方向,距离是( )米。

(2)犯罪分子2在警察局的( )向,距离是

( )米。

(3)犯罪分子3在警察局的( )方向,距离是

( )米。

2、做一做,课件出示,独立完成后订正。

四、课堂小结

这节课你的最大收获是什么?你还有什么不懂的地方?

位置与方向, 生活常遇到,

要想定位置, 两点要记牢:

方向是首要, 距离少不了。

五、拓展延伸 同学们的收获可真不少,你们能用今天所学的知识创作一幅学校建筑平面图吗?自己开始试一试吧!

教学目标

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重难点

教学重点: 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点: 引导学生总结分数乘整数的计算法则。

教学过程

一、 复习

出示复习题。

1.根据题意列出算式:

5个12是多少?

3个14是多少?

2.下列句子中那些可以看做单位1

猎豹的速度是狮子的七分之三。

参加合唱队的同学占全班人数的五分之一。

红花比黄花多二分之一。

十月比九月节约四分之三。

3.计算: 3/10 +3/ 10 + 3/10 =

3/10 + 3/10+ 3/10 这题我们还可以怎么计算?

今天我们就来学习分数乘法。

二、 新授

1、利用 3/10 + 3/10 + 3/10 教学分数乘法。

(1) 这道加法算式中,加数各是多少?(都是3/10)

(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, 3/10 ×3)

谁能把它补充完整

2、出示例1,

(1)理解题意:

引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 2/11 ”,就是把袋鼠跳 一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2 份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,

(列式:2/11×3 = 6/11 )

有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。

3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数 相乘的积作分子,分母不变。

4、练习:练习完成“做一做”第2题。

5、教学例2

(1)出示3/8×6,学生独立计算。

(3)学生通过自己的想法的来约分:a、先约分再计算;b、先计算得出乘积后约分。 (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

6.练一练,课件出示,学生独立计算。然后订正。

三、巩固练习

比赛:

第一回合

1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约 分,养成先约分在计算的习惯)

第二回合

2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约 分,养成先约分在计算的习惯)

四、课堂总结:

今天你有什么收获?

五 、布置作业 : 练习二第1、2、4题。

教学目标

1.使学生认识圆,掌握圆的各部分名称。

2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.培养学生观察、分析、抽象、概括等思维能力。

教学重难点

教学重点

在动手操作中掌握圆的特征,学会用圆规画圆的方法。

教学难点

理解圆上的概念,归纳圆的特征。

教学工具

课件

教学过程

一、活动一:演示操作,揭示课题

课件出示“大家都来当裁判喽!”

演示两人骑自行车的动画,一人的自行车轮子是圆形的,一人的自行车轮子是其它形状的。

让学生初步感知圆在生活中的应用。

二、活动二:动手操作,探究新知

(一)教师让学生举例说明周围哪些物体上有圆。

(二)认识圆的各部分名称和圆的特征。

1.学生拿出圆的学具。

2.教师:你们摸一摸圆的边缘,是直的还是弯的?

教师说明:圆是平面上的一种曲线图形。

3.通过具体操作,认识一下圆的各部分名称和圆的特征。

(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次。

教师提问:折过若干次后,你发现了什么?

仔细观察一下,这些折痕总在圆的什么地方相交?

教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。

教师板书:圆心

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

在同一个圆里可以画多少条半径?

所有半径的长度都相等吗?

教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。

教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

在同一个圆里可以画出多少条直径?

教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。

(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

如何用字母表示这种关系?

反过来,在同一个圆里,半径的长度是直径的几分之几?

教师板书:在同一个圆里,直径的长度是半径的2倍。

(三)反馈练习。

1、p58的“做一做”第1、3、4题

2、练习十四的第2、3题

(四)圆的画法。

1、学生自学,看书57页。

2、学生试画。

3、学生通过试画小结用圆规画圆的方法,注意的问题。

4、教师归纳板书:1.定半径;2.定圆心;3.旋转一周。

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

5、学生练习

p58的“做一做”第2题

(五)教师提问

为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?

教师板书:半径决定圆的大小,圆心决定圆的位置。

三、全课小结

这节课我们学习了什么?通过这节课的学习你有什么收获?

四、作业

练习十四的第1题

课后习题

练习十四的第1题。

教学目标

1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

教学重难点

1 教学重点

会利用圆和其他已学的相关知识解决实际问题。

2 教学难点

圆与其他图形计算公式的混合使用。

教学工具

ppt 卡片

教学过程

1 复习巩固上节知识,导入新课

2 新知探究

2.1 圆环面积

一、问题引入

同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

回答(略)。

今天我们就来做一做与光盘相关的数学问题。

二、圆环面积求解

步骤:

师:求圆环面积需要先求什么?

生:内圆和外圆的面积

师:同学们可以自己做一做,分组交流一下自己的解法。

师:给出计算过程与结果:

三、知识应用

做一做第2题:

师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

2.2 圆与正方形

一、问题引入

师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

二、知识点

例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

步骤:

师:题目中都告诉了我们什么?

师:分别要求的是什么?

生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

师:应该怎么计算呢?

归纳总结

如果两个圆的半径都是r,结果又是怎样的呢?

当r=1时,与前面的结果完全一致。

四、知识应用

70页做一做:

师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

解:铜镜的半径是300px

5.3 随堂练习

若还有足够时间,课堂练习练习十五第5/6/7题。

(可以邀请同学板书解题过程)

6 小结

1. 今天我们共同研究了什么?

今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

2. 在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

7 板书

例2解答步骤

教学目标

(1)能够利用身边的工具测量出圆的周长

(2)能够掌握多种测量计算圆的周长的方法

(3)能够说出圆周率小数点7位

(4)能够了解祖冲之

(5)能够灵活运用圆的周长计算公式进行计算

(6)培养学生逻辑推理能力

(7)对学生进行爱国主义教育

(8)培养学生的观察、比较、概括和动手操作的能力

教学重难点

重点:圆的周长和圆周率的意义

难点:圆周长公式的推导过程

教学工具

ppt课件、视频、篮球、硬币、瓶盖

教学过程

一、讨论探索活动导入

1、展示实物篮球、瓶盖、硬币

揭示主题:圆的周长

3、引导学生利用身边的工具测量出篮球的周长(分小组讨论探索)

5、分享测量的方法

方法:化曲线为直线、滚动、软皮尺测、绳绕圆一周

二、了解圆周率

1、提问:观察一下篮球和硬币的直径和周长,你们得出什么结论?

结论:

圆的周长与它的直径有关,直径越大,周长越大

一个圆的周长总是它的直径的3倍多一点

2、提问:有谁知道圆周率是多少吗?

圆周率3.1415926535

3、大家猜一猜圆周率有多少小小数点?

(展示祖冲之图片以及圆周率的发展史)

3、播放视频:歌曲名3.1415

三、利用公式计算圆的周长

公式:c=πd或c=2πr

2、提问:求圆的周长需要知道哪些条件?

条件:直径或者半径、π=3.14

3、例题讲解

书上第64页例题

4、做练习题

(展示ppt)

课后小结

圆的周长与它的直径有关,直径越大,周长越大

圆的周长公式:c=πd或c=2πr

课后习题

同样的小组成员,测量一个学校圆形的周长,小组的形式合作完成

人教版六年级数学百分数教案篇四

教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:

分数除法应用题的特点及解题思路和解题方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

2、解决问题

根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× =体内水分的重量

(2)指名口头列式计算。

二、新知探究

(一)教学例1.

1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

3、解决第二个问题:小明的体重是爸爸的 ,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解: 35÷ =75(千克)

4、巩固练习:p38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、当堂测评(课件出示)

1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

2、解决问题(40分)。

某校有女生160人,正好占男生的8/9,男生有多少人?

学生独立完成,教师巡回指点,注重学困生的提高。

小组内订正、互评,做到兵强兵。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计意图:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

教学后记:

人教版六年级数学百分数教案篇五

教学目标

1.1 知识与技能:

1.在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数,知道0既不是正数也不是负数。

2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

1.2过程与方法 :

经历负数的认识过程,体验比较、归纳总结的方法。

1.3 情感态度与价值观 :

感受数学与实际生活的联系,激发学习兴趣,培养学思结合的良好学习习惯,体会数学知识之间内在联系的逻辑之美。

教学重难点

2.1 教学重点

能用正、负数表示生活中两种相反意义的量。

2.2 教学难点

用负数解决生活中的实际问题。

教学工具

多媒体课件

教学过程

一、游戏引入

同学们,今天我们来玩个游戏轻松一下,游戏叫“我正你反”。游戏规则:老师说一句话,请你说出与它意思相反的话。

1、向上看(向下看)

2、向前走200米(向后走200米)

3、电梯上升15层(电梯下降15层)

4、零上10摄氏度(零下10摄氏度)

很好,接下来,老师换一个游戏规则。老师给大家看一幅图片(课件出示第2页例1的几幅图)。

二、初步感知

师:同学们以前有没有见过类似于第2页例1的几幅图的情景呢?

生:有,看天气预报的时候。

出示例1情境图.

学生读一读。

三、认识负数

1、认识温度计,理解用正负数来表示零上和零下的温度。

师:(课件出示温度计)同学们,认识它吗?

生:温度计。

师:你知道它们表示什么?(课件出示℃、℉)

生:℃表示摄氏温度,读作“摄氏度”。

生:℉表示……

师:℉表示华氏温度,读作“华氏度”。 那我国用什么来计量温度呢?

生:我国用摄氏度来计量温度。

师:一大格表示多少摄氏度?一小格表示多少摄氏度?

通过课件展示让学生对温度计做进一步的认识,让学生知道一大格表示10摄氏度,一小格表示2摄氏度。

师:0摄氏度怎样规定的?你知道吗?

生:水结冰的温度定为0℃。

师:是的,科学家把水结冰的温度定为0℃。读作:0摄氏度。比0℃ 低的温度叫零下温度,通常在数字前加“—”(负号)

师:零上温度用正数表示 ,零下温度用负数表示。

生:零上10摄氏度记作:+10℃;零下10摄氏度记作:-10℃ 。

2、读出水银柱所表示的温度。(课件出示)

教师课件出示水银柱所表示的温度,引导学生读一读。

3、从上面的天气预报图中你了解到哪些信息?

例如:北京最高温度是5℃,最低温度是零下5 ℃。

师:北京-5℃和5℃一样吗?都表示什么意义呢?

生:-5℃和5℃不一样, -5℃表示比零度还要低5摄氏度, 5℃表示比零度高5摄氏度。

生:-5℃和5℃不一样, -5℃比零摄度冷, 5℃表示比零摄氏度热。

教师小结:5℃和- 5℃表示具有相反意义的量。

4、正确读出例1中的各个城市的天气温度。

师生一起小结:当气温高于0℃的时候,我们在数字前面加一个“+”号或者直接用数字来表示,读作零上×摄氏度。当气温低于0℃的时候,我们在数字前面加一个“-”号来表示,读作零下×摄氏度。因此,+5℃表示零上5摄氏度,读作正三摄氏度;-5℃表示零下5摄氏度,读作负三摄氏度。(板书:+5℃ 正三摄氏度;-5℃ 负三摄氏度)

学生自主完成例1的信息表,然后和同桌说说各数表示的意思。

指名学生回答,教师点评并总结。

5、教学教材第3页例2。

师:接下来我们再来看一下第3页例2的图片,每个数字表示什么意思?

生:“2000”表示存入2000元。

生:“-500” 表示支出了500元。

生:“-132” 表示支出了132元。

生:“500”表示存入500元。

师:你能找到意思相反的词语或者数学符号吗?(提示2000.00与+2000.00代表相同的意思。)

师:那在这里500.00和-500.00分别表示什么意思呢?

生:500.00表示存入500元, -500.00表示支出500元

学生说出各个数字的含义。

教师小结:500和-500表示具有相反意义的量。

师:很好,同学们再试着说说图中其他数各表示什么。

学生交流。

6、思考总结

教师引导学生比较例1和例2,找出他们的共同点。

师:同学们比较一下例1和例2,他们有什么共同点吗?

学生小组讨论汇报。提示:在例1和例2中,都有两种数来表示两种相反意义的量—零上温度和零下温度,支出与收入。

7、0是什么数?

师:我们把海平面的高度看做多少呢?

生:看作0。

师:(课件展示)珠穆朗玛峰比海平面高8844.43米,怎么表示?

生:记作+ 8844.43米。

师:吐鲁番盆地比海平面低155米,如何表示?

生:记作-155米。

课件展示小知识:海平面,顾名思意,就是大海的水面。它用在测量地面高度上,又称海拔。我国所有的大地测量和标志,都是以黄海海面的基点开始的,任何海拔标高,都是相对于黄海海面的基准点。

(通过对海平面的认识,温度计上的0,得出0像一条分界线,把正负数分开,所以0既不是正数也不是负数。)

小结:为了表示两种相反意义的量,这里出现了一种新的数:-16,-500。像-16,-500,-3,-0.4……这样的数叫做负数。- 读作负八分之三。

而以前所学的16,2000, ,6.3……这样的数叫做正数。正数前面也可以加上“+”号,例如+16,+ ,+6.3等(也可以省去“+”号)。+6.3读作正六点三。

师:0像一条分界线,把正负数分开。0既不是正数,也不是负数。

8、做一做

课件出示题目:

(1)、用正负数表示。

①、零上12.5摄氏度表示为:________,(+12.5 ℃)

零下3.5摄氏度表示为:________。(-3.5 ℃)

②、广西某地有一天坑,

坑口高于海平面125m,表示为:________, (+125)

坑底低于海平面 m,表示为:________.(—100)

(2)、先读一读,再议一议:观察这些数,可以怎样分类?

学生同桌讨论,教师指名汇报。

9、教师引导学生总结:数可以分成正数、0、负数。正数包括正整数、正分数、正小数 ,负数包括负整数、负分数、负小数 ,0既不是正数,也不是负数。它是正、负数的分界点。

正数前面可以写“+”,但通常不写,而负数前面的“-”必须写。正数前面可以读“正”,但通常不读(如果有“+”号必须读),而负数前面的“负”必须读。

四、走进生活

1.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 __________。月球表面的最低温度是 __________。(100℃,0℃, -88.3 ℃, -183℃)

2、做一做

胜5场记作 _______, 读作_________;(+5场,正五场)

输3场记作 _______ , 读作 _________。(-3场,负三场)

收入100元记作_______,读作___________;(+100元,正一百元)

支出200元记作_______ ,读作___________。(-200元,负二百元 )

学生交流,指名说一说。

3、叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?

学生交流,指名说一说。

4、六年级三个班进行智力抢答赛,答对一题得10分,答错一题扣10分,不答得0分。根据三个班的得分,说一说他们的答题情况。

学生交流,指名说一说。

5、你会用正负数表示下面各地的海拔高度吗?

(1)、华山比海平面高2000m,记作(+ 2000m )

(2)、死海比海平面低392m,记作(- 392m )

学生交流,指名说一说。

6、我能判断对错

(1)任何一个负数都比正数小。(√)

(2)一个数不是正数就是负数。(×)

(3)因为“4”前面没有“+”号,所以“4”不是正数。(×)

(4)上车5人记作“+5人”,则下车4人记作“-4人”。( √)

(5)正数都比0大,负数都比0小。(√)

(6)5゜c和+5゜c所表示的气温一样高。(√)

7、小结交流

师:你还在什么地方见过负数吗?

生:家庭收支账本上。

生:冰箱的冷冻室温度。

生:地图上显示的海拔高度。

五、巩固练习

1、教材第4页“做一做”第1题。

学生独立读出-3℃和-18℃这两个温度,并根据题干思考北京和哈尔滨的温度哪个低些。

教师指名回答。

2、教材第4页“做一做”第2题。

学生小组依次回答,教师集体订正。

教师强调:0既不是正数,也不是负数。

课后小结

师:通过这一节课的学习,你有什么收获?

师:这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

板书

认识负数

+5℃ 正三摄氏度 -5℃ 负三摄氏度

5 三 -5 负三

八分之三 -

负八分之三

0既不是正数,也不是负数。

教学目标

1.1 知识与技能:

(1)认识并掌握圆柱的特征,知道圆柱的各部分名称。

(2)理解圆柱的侧面展开图与圆柱各部分的关系。

1.2过程与方法 :

1.经历“形象-表象-抽象”的过程,体验从实物中抽象出图形的学习方法。

2.经历圆柱侧面展开的操作过程,体验比较、发现、归纳的学习方法。

1.3 情感态度与价值观 :

在不断的观察与操作、猜想与验证、合作与交流中提高学生的观察能力、动手实践能力,体验成功的乐趣,提高学习兴趣,培养学生观察、概况、抽象的能力。

教学重难点

2.1 教学重点

在活动中发现圆柱的特征和侧面积的计算方法,正确计算圆柱的侧面积,形成空间观念。

2.2 教学难点

理解曲面和通过化曲为直的方法推导侧面积的计算方法

教学工具

多媒体课件,粉笔盒,圆柱的教具模型,长方形硬纸,木棒

教学过程

一:谈话导入,揭示课题,创设情境。

1、教师出示粉笔盒,问:这是什么图形?

生:长方体。

师:我们学习过哪些立体图形?

生:长方体。

生:正方体。

师:长方体有什么特征?

生:长方体的6个面都是长方形(有时有2个相对的面是正方形)。

生:长方体有6个面,8个顶点,12条棱。相对的面的面积相等,相对的棱的长度相等。

师:正方体有什么特点?

生:正方体的6个面都是正方形,6个面的面积相等。

生:正方体有12条棱,棱长都相等,有8个顶点。

师:正方体可以看成是特殊的长方体。

引入新课。

2、出示事先准备的圆柱形物体。

师:这些物体是长方体或正方体吗?

生:不是。

师:这些物体的形状都是圆柱体。这就是我们今天要学习的新的立体图形。(板书课题)

老师多媒体课件演示生活中的例子。

师:那么同学们在日常生活中还见过哪些圆柱的物体?

生:分别回答。

(设计意图:一方面让学生体会数学的知识来源于生活,体验数学与生活的紧密联系,一方面感受圆柱在生活中的美,更进一步激发学生的学习兴趣。)

二、探究新知

1、教学例1:

(1)、小组合作:探究圆柱各部分的组成和特征。

师:那么圆柱究竟是怎么样的呢?(课件出示)

②、圆柱有几个面组成?

③、小组讨论并验证:两个底面有什么关系?

④、量一量圆柱两个底面之间的距离有什么特点? (2)、小组汇报:

(设计意图:结合实物,初步探索圆柱的组成。)

学生动手操作,小组内交流感知。

师:哪一组同学来给大家说说看,圆柱有哪些特征?你们是怎么验证的?

(学生汇报,教师相机质疑)

生:我们知道了圆柱有3个面组成,长方体和正方体都有6个面。

生:上下两个面是圆形。

生:圆柱两个底面之间的距离是一样的。

(2)、观察、比较圆柱底面的特征。

生:圆柱的两个底面都是圆,大小相等。(板书:面积相等)

师:你是怎样知道两个底面相等的?

生:画在纸上倒过来观察。

(3)、圆柱的高。

课件显示:一个圆柱高度变化过程。

师:圆柱的高什么发生了变化?

引导:哪段距离表示圆柱的高?请看屏幕,圆柱两个底面之间的距离,就叫圆柱的高。

(课件出示:圆柱两个底面之间的距离叫做高)

师:圆柱的高在哪些地方可以找到?

根据学生的回答,课件上显示并用有颜色的线闪烁。

小结:圆柱的高有无数条,高的长度都相等。

师:你能在你的圆柱上指出这条高吗?(圆柱中心的高,指不到)

学生动手操作,同桌合作探究。

师:面对无数条的高,测量哪一条最为简便?(为了方便一般测量侧面上的高)

师:请看这样画一条线段是它的高吗?(三角板斜放)

预设:高是两个底面之间的距离,应该垂直于两个底面。

师:在我们的生活中,圆柱的高还有其他的说法。

(课件演示)你看:一口水井是圆柱形的,这个圆柱的高还可以说是“深”,一个1元硬币是圆柱形的,这个圆柱的高还可以说是“厚”,水管也是圆柱形的,它的高还可以叫“长”。

【设计意图】把抽象的立体图形还原于生活原形,更好帮助学生建立数学与生活的联系,为以后解决生活中的实际问题作好铺垫。

(4)、小试牛刀:实践应用,发展新知:

①、指出下列图形哪些是圆柱?

②、做一做:

教师出示准备好的长方形纸片

师:请同学们把长方形的硬纸贴在木棒上,和我一起快速转动木棒,看一看转出来的是什么形状。

组织学生动手操作后,汇报结果:

生:转动起来像一个圆柱。

(设计意图)让学生从旋转的角度来认识圆柱,感受平面图形与立体图形的联系和旋转。

2、教学例2

例2、圆柱的侧面展开是什么形状?

(1)、组织学生摸一摸圆柱形的模型,看一看圆柱侧面在哪里,猜想一下侧面展开后是什么形状。

组织学生分小组操作:剪开一个圆柱模型的侧面,再展开观察。得出结果:

师:圆柱的侧面展开后是一个长方形或正方形。

让学生经过分析、比较,概括出:圆柱侧面展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。(板书)

(3)、引导学生思考:什么情况下,圆柱的侧面展开图是正方形?

小结:圆柱的底面周长与高相等时,圆柱的侧面展开图是正方形。

3、探究圆柱的底面与侧面的关系

师:小组合作,先想好并说说怎样操作,组长分好工后,再开始操作。

学生动手操作,教师巡视指导。

师:斜着剪侧面展开后得到的是什么图形?

生:得到一个平行四边形。

生:正方形。

三、巩固练习(课件一 一展示)

1、我能行

(1).圆柱上、下两个底面都是( 圆)形,它们的面积都( 相等 )。

宽等于圆柱的( 高 )。

(3).圆柱的两个底面之间的距离叫(高)。

(设计意图:总结回顾,完成填空。)

2、想一想,能得到什么图形?

学生小组内交流,然后指名汇报。(长方体、正方体、圆柱体)

3、判断:对的打“√”,错的打“×”。

①圆柱体的高只有一条。 ( × )

②上下两个底面相等的圆形物体一 定是圆柱体。 ( × )

③圆柱体底面周长和高相等时,沿着它的一条高剪开,侧面是一个正方形。 ( √ )

4、你能把这张纸做成什么样的圆柱?

学生动手做一做,然后汇报交流。

四、你知道吗:

师:为什么树干都是圆柱形的?

(课件出示小知识)圆柱具有较大的支撑力。树木的树冠全靠主干支撑。特别是硕果累累的果树,上面挂着许多果实,需要强有力的树干支撑,才能生存。

圆柱形的树干没有棱角,狂风吹打时,不论风卷着尘沙、杂物从哪个方向吹来,受影响的都只是极少部分,不易受到冲击的伤害。因此,树干的形状是圆柱形的,这是树木对自然环境适应的结果,也是长期进化的结果,更是为了适应生长的需要。

课后小结

1、课堂小结

本节课我们认识了一种新的立体图形—圆柱,这一类图形有几个共同的特点:比如它们的上、下底面都是圆,侧面展开后是一个长方形或正方形,并且圆柱侧面展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。

2、总结全文

你在这节课有什么收获?

你还有什么疑问?

课后习题

练习三、第5题

板书

圆柱的认识

圆柱的上、下两个面叫底面;

周围的面(上、下底面除外)叫侧面;

两个底面之间的距离叫高。

圆柱侧面展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。

教学目标

1.1 知识与技能:

1. 能根据具体情境,灵活运用圆面积和长方形面积理解圆柱体的表面积。

2. 通过想象、动手操作等活动,理解圆柱侧面展开图是一个长方形,加深对圆柱特征的认识,发展空间观念。

3. 探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

1.2过程与方法:

讲解圆柱体表面积的过程中,培养学生初步的观察能力以及想象、概括能力。

1.3情感态度与价值观:

引导学生进一步体会立体图形的平面化,感受数学探索活动本身的乐趣,增强学好数学的信心。

教学重难点

2.1教学重点:

让同学们理解圆柱的表面积计算方法。

2.2 教学难点:

能够分清侧面积和表面积的区别,合理应用到日常生活中.

教学工具

课件、多媒体设备等

教学过程

一、情境导入

生:同学们举手进行回答。

师:这个水杯有哪些面组成呢?

生:上底面、下底面、侧面

师:多媒体出示动画

师:我们可以看出它有三部分组成。

师:现在想一下这三部分都是什么图形?

生:上下底面(圆形),侧面(长方形)

师:把这三个面积加起来,就是我们今天要学习的圆柱的表面积。

生:举手口述连线答案。

师:课件出示答案

圆柱的侧面积 = 底面周长 × 高

师:现在,我们来看一些数量关系:

①柱体上下底面面积相等;

②圆柱体侧面长=底面圆周长

③圆柱体侧面宽=圆柱体高

二、探究新知

(一)、侧面积

师:我们现在来看看圆柱体的侧面积是怎样计算的。

学生:举手发言

在回答问题的过程中教师要用鼓励性的语言激发学生探求知识的能力。

师:多媒体出示答案

圆柱侧面积=长×宽=底面圆周长x高

师:现在我们看看在实际应用中是如何计算的。(多媒体出示问题)

生:举手回答

师:多媒体出示答案

解:周长=2πr=2×2π=4π

侧面积=周长×高=4π×5=20πcm?

师:同学们要认真观察书写步骤。

(二)、表面积

师:现在我们来看看圆柱体的表面积是怎么计算的。

生:举手回答问题

师:多媒体出示答案

圆柱表面积=侧面积+底面积=侧面积+上底面积+下底面积

师:下面我们再来做一个练习吧!

师:同学们可以先算出侧面积和底面积,然后再算表面积。

生:通过同学们互相竞争,增强了同学们学习数学的兴趣。

解析:

解:周长=2πr =2×2π =4π

侧面积=周长×高=4π×10=40π

底面圆面积=πr?=4π

答:需要48πdm?铁皮

三、巩固练习

师:现在请大家看屏幕上面的这道题,能不能分小组解决问题。(课件出示题目)

1、 天气冷了,农村学生就要生火了,烟囱使用铁皮做的,一节烟囱长为2000px,烟囱的半径为100px,求制作这样的烟囱一节需要多少铁皮。

师:要找出题目的关键,理清思路,细心解题。

生:学生互相探讨交流,完成整个题目,培养学生独立思考的能力。

解析:

解:周长=2πr=2×4π=8π

表面积=侧面积=8π×10=80π

答:制作这样的烟囱一节需要80πcm?铁皮

师:接下来,再看一个题目,这次也要分组进行,看看哪个组做得又快又好。(课件出示题目)

2. 现在要砌一个圆柱形的水窖,预计水窖深3米,水窖底的底面直径为1.5米,现在求一下整个水窖需要抹去多少平方米的混凝土。

生:各小组在竞争中享受获取知识的乐趣。

解析:周长=πd=1.5π

表面积=侧面积+下底面积=1.5π×3+2.25π=6.75π

答:整个水窖需要抹去6.75π平方米的混凝土

师:现在大家独立完成下面的题目(出示题目)。

3、已知一个圆柱体的表面积是15700px?,其中圆柱体的底面半径50px,求圆柱体的高。

解:设圆柱体的高为h

根据:表面积=侧面积+2底面积

628=2×2πh+2×π2?

628=4πh+8π

628=4×3.14h+8×3.14

20=4h+8

h=4

答:圆柱体的高4米

7 作业布置

师:在作业本上面完成下面的2个题目。

解:周长=2πr=2×5π=10π

侧面积=周长×高=10π×10=100π

底面积=πr?=25π

表面积=侧面积+2底面积=100π+2×25π=150π

2、现在要给一个圆柱形的纸质品涂上颜色,现在知道该艺术品的底面圆半径为50px,圆柱体高为125px,请同学们求出圆柱体的表面积。

解:周长=2πr=2×2π=4π

侧面积=周长×高=4π×5=20π

底面积=πr?=4π

表面积=侧面积+2底面积=20π+4π=24π

课后小结

这堂课大家通过学习圆柱体的表面积,使同学们能用学过的知识去解决一些实际的图形面积问题。主要为了让同学们能够建立丰富的想象,把立体图形转化为平面图形的能力,在教学中涉及了学生互动,分组学习等教学模式,真正体现了学生的主体地位。让学生在课堂上动起来,寻找知识、体会知识,并通过练习提高学生的想象能力和抽象思维能力。

板书

第2节 圆柱(圆柱的表面积)

教学目标

圆柱的体积(1)

圆柱的体积(教材第25页例5)。

探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。

教学重难点

1.掌握圆柱的体积公式,并能运用其解决简单实际问题。

2.理解圆柱体积公式的推导过程。

教学工具

推导圆柱体积公式的圆柱教具一套。

教学过程

【复习导入】

1.口头回答。

(1)什么叫体积?怎样求长方体的体积?

(2)怎样求圆的面积?圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。

2.引入新课。

教师板书:圆柱的体积(1)。

【新课讲授】

1.教学圆柱体积公式的推导。

(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:

①圆柱切开后可以拼成一个什么立体图形?

学生:近似的长方体。

②通过刚才的实验你发现了什么?

教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?

学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。

(4)学生根据圆的面积公式推导过程,进行猜想:

①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?

②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?

③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?

(5)启发学生说出:通过以上的观察,发现了什么?

①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。

(6)推导圆柱的体积公式。

①学生分组讨论:圆柱的体积怎样计算?

②学生汇报讨论结果,并说明理由。

教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。

2.教学补充例题。

(2)指名学生分别回答下面的问题:

①这道题已知什么?求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?

学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。

(3)出示下面几种解答方案,让学生判断哪个是正确的。

①50×2.1=105(cm3)答:它的体积是2625px3。

②2.1m=5250px 50×210=10500(cm3)

答:它的体积是262500px3。

③1250px2=0.5m2 0.5×2.1=1.05(m3)

答:它的体积是1.05m3。

④1250px2=0.005m2

0.005×2.1=0.0105(m3)

答:它的体积是0.0105m3。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。

教师板书:v=πr2h。

【课堂作业】

教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。

答案:“做一做”:1. 6750(cm3)

2. 7.85m3

第1题:(从左往右)

3.14×52×2=157(cm3)

3.14×(4÷2)2×12=150.72(cm3)

3.14×(8÷2)2×8=401.92(cm3)

【课堂小结】

通过这节课的学习,你有什么收获?你有什么感受?

【课后作业】

完成练习册中本课时的练习。

第4课时 圆柱的体积(1)

课后小结

1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。

2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。

3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。

课后习题

教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。

答案:“做一做”:1. 6750(cm3)

2. 7.85m3

第1题:(从左往右)

3.14×52×2=157(cm3)

3.14×(4÷2)2×12=150.72(cm3)

3.14×(8÷2)2×8=401.92(cm3)

教学目标

1.1 知识与技能:

(1)使学生认识圆锥,掌握圆锥的特征及各部分名称。

(2)使学生会画圆锥的平面图形及掌握测量圆锥的高的方法。

(3)培养学生的实验能力,发展学生的空间观念。

1.2过程与方法 :

经历圆锥的认识过程,体验探究发现的学习方法。

1.3 情感态度与价值观 :

感受数学与实际生活的联系,激发学生学习数学的兴趣,培养学生积极参与,自主学习的精神。

教学重难点

2.1 教学重点

掌握圆锥的特征,认识圆锥的高。

2.2 教学难点

掌握圆锥高的测量方法。

教学工具

多媒体课件,圆柱形铅笔,圆锥实物及模型,直尺,直角三角形硬纸

教学过程

一、回顾强化

老师啊先给大家准备了个谜语,看谁能快速的猜出谜底来,请看屏幕。出示谜语“身体长得细又长,天生美丽黑心肠,上平下尖纸上爬,越爬越短越伤心”(猜一学习用具)

师:不错。谜底就是老师手上拿的铅笔。

课件出示一支圆柱形铅笔。

师:同学们这支铅笔是什么形状的?

生:是圆柱体。

师:你能说说它具有什么特征吗?

预设

生1:圆柱有三个面,有上下两个底面,是完全相同的两个圆。

生2:圆柱有一个侧面是曲面。

生3:两个底面之间的距离叫做圆柱的高,有无数条高。

生4:圆柱侧面展开是长方形。

二、创设情境,激情导入

师:圆柱的特征同学们掌握得非常好,今天我们学习一种新的几何形体,请同学们仔细的看老师的操作(师拿出一支圆柱形铅笔用转笔刀削铅笔)

师:想想被削的这一端会发生什么变化?(

生:越来越细,越来越尖。

师:老师如果把削成的笔尖部分切下来,会是什么形状叫呢?同学们请看屏幕。

课件:把削成的笔尖部分(圆锥体)垂直切下来。

师:同学们知道被切下来的是什么几何形体吗?

生:是圆锥体。

师揭示课题:

师:不错,我们把象这样的几何形体叫做圆锥体,简称圆锥,今天我们就来学习《圆锥的认识》。

板书课题《圆锥的认识》。

三、探究体验。

1、列举,提出问题。

同桌同学互相讨论。

(出示一组生活中圆锥的例子,丰富学生的感知)

师:刚才我们共同找出了一些生活中的圆锥,接下来再让我们共同欣赏课本带给我们的精彩画面(教材23面图),请同学们按照老师的样子用铅笔沿着实物的轮廓把你找到的圆锥体描画出来。

学生描画课本中圆锥的轮廓。

师:在日常生活和生产劳动中,同学们还知道哪些物体的形状是圆锥体的?

生1:陀螺的下半部分

生2:盖房子用的铅锤的形状是圆锥体的。

生3:……。

……

师:看来圆锥形的物体给我们生活的带来了不少的便利,我们只有对它了解的更多,才能更好的得用它。

2、引导观察圆锥的特征

师:下面请同学们拿出圆锥体模型,看一看、摸一摸、同桌同学互相说说你的感觉。

学生手拿圆锥体模型观察、想。

同桌交流、讨论。教师深入小组和学生一起进行探讨。

师:谁愿把你们的研究成果告诉给大家。

生汇报师板书:(预设展示过程)

圆锥的特征。

生1:我们发现圆锥上面细,下面粗。

生2:圆锥有一个尖尖的部分,摸起来很扎手。

师:我们把它叫做顶点。

(学生讲到此点时,配合图片在图上标出,再请一个同学上台指出黑板上老师画的圆锥的顶点并标出来,其他同学在答题纸上标出圆锥的顶点)

生3:圆锥有一个弯曲光滑的面。

师:我们可以把它叫做侧面。这个面是曲面。

(学生讲到此点时,配合图片在图上标出)

师:同学们回顾下圆柱的侧面展开是什么图形?

生:长方形。

师:那么圆锥的侧面如果把它展开来会是个什么形状呢?

师展开一个圆柱的侧面,让学生观察。

生:圆锥的侧面展开是个扇形。

生4:圆锥有一个圆形的面,我们可以把他叫做底面。

(学生讲到此点时,配合图片在图上标出,再请一个同学上台指出黑板上老师画的圆锥的底面并标出来,其他同学在答题纸上标出圆锥的底面)

3、师引导观察圆锥的高

探究测量圆锥高的方法

a﹑认识高

请同学们带着这个问题阅读课本第24页例1的前半部分。

师:连接这两个点所得到的线段我们也可说成是从圆锥的顶点到底面圆心的距离。下面我们把书翻到24页找到圆锥高的定义,把这一句话齐读一遍。

师:通过我们对圆锥的高的了解,想一想圆锥的高有几条?(

生:一条。

师:为什么只有一条?

生:因为圆锥只有一个顶点和底面只有一个圆心。

b﹑测量高

师:由于圆锥的高在它的内部,那么我们怎样测量圆锥的高呢?

引导学生先想一想,然后利用老师给大家准备好的圆锥,同桌同学共同探究圆锥的高的测量方法。(以同桌为单位进行操作。教师适当引导指正。)

学生汇报,师通过幻灯小结.

生1:测量时,圆锥的底面要水平地放;

生2:上面的平板要水平放在圆锥的顶点上面。

师:通过刚刚的测量,所以我们今后在表示圆锥高的时候,高还可以表示在圆锥的外面。(师演示)

4、虚拟的圆锥

着一条直角边旋转,会形成什么形状?

(2)通过操作,使学生发现转动出来的是圆锥。并说一说圆锥的顶点、高和底面圆心及底面半径。

四、应用反馈

1、教材第32页“做一做”。

组织小组内同学相互指出各个圆锥的底面、侧面和高,教师巡视指导。

然后集中进行讲解。

2、教材第35页练习六第2题。

组织学生独立思考后指名汇报。

3、课外练习

(1)、幻灯出示练习题:将下面图形分类,说说每类图形的名称和特征。

学生同桌交流,进行分类。

(2)、联系前面所学的圆柱,请同学们在答题纸上写写圆柱和圆锥的联系和区别。

(学生汇报结果)

预设:

生1:圆柱是由两个底面和一个侧面三部分组成。圆柱的底面都是圆,并且大小一样。圆柱的侧面是曲面。一个圆柱有无数条高。

生2:圆锥有一个顶点,圆锥的底面是个圆,侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥有一条高。

4、幻灯出示生活中的数学。

课后小结

1、同学们,通过这堂课的学习,我们对圆锥有了个初步的认识,知道了圆锥的一些特征。

2、总结圆锥的特征:圆锥有一个顶点,圆锥的底面是个圆,侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥有一条高。

板书

圆锥的认识

人教版六年级数学百分数教案篇六

1、理解生活中百分率问题的含义,掌握求百分率的方法。

2、理解求百分率应用题的一般结构和求百分率思考过程的主要步骤,提高学生解决问题的能力。

3、通过解决生活中简单的实际问题,培养学生数学的应用意识。

重点:会解答求百分率(或一个数是另一个数的百分之几)的应用题。

难点:对一些百分率的理解。

师:同学们前面学习百分数的意义和写法,还学习了百分数、小数和分数的互化,其实,百分数在日常生活中应用非常广泛,人们经常用百分数来解决问题。

这节课就让我们解决生活中的百分数问题。(板书课题:用百分数解决问题)

1、出示信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。

提问:你能提一个求分率的数学问题吗?

(已达到《标准》的人数占六年级总人数的几分之几?)

师:谁来解答这个问题?

生:120÷160=

师:你知道这个题目真正的问题是什么呢?(出示问题)你们能解决这个问题吗?有什么疑问?(生质疑)师解疑,板书什么是达标率。

让学生说说六年级的达标率是什么意思?

怎样解决这个问题呢?(同桌进行交流)

生:表示已达标的人数占六年级学生总人数的百分之几,六年级学生总人数为单位“1”。

师:从这儿,我们就可知道求百分数的方法跟求一个数是另一个数的几分之几是一样的。

师:请同学们打开书第85页例1的第1部分比较一下,看有什么不同?

(学生边说老师边板书:)

生:写法不同,书本写成分数的形式了,而且多了“乘100%”

师:谁知道为什么要“乘100%”呢?不乘行吗?

师:对达标率的计算你还有疑问吗?

生:0.75×100%怎样计算呀?

师:问得好,那谁能帮他解决这个疑问呢?

生:我知道,可以把100%看作1,再把0.75化成75%就可以了。

生:老师,我不是这样想的,可以把100%中的100乘0.75,“%”照写。

老师总结:同学们都说得非常好,两种理解方法都可以,你认为哪一种更适合你学习的,你就可以选用那一种。

(板书: ×100%=0.75×100%=75%)

师:同学们现在你对求达标率这种问题会了吗?你还有没有不理解的地方?

(灵活处理)

解决了达标率问题,下面我们到生物组去看一看。这里有一个还没完成的试验报告。他们遇到什么困难了?什么是发芽率?(师板书)知道了什么是发芽率,怎样计算呢?你又能否像达标率一样把发芽率用公式表示出来?(让同桌带着问题讨论)学生汇报,老师完善板书。

师:现在分3大组完成这个试验报告并汇报结果,看哪一组最快最好。

师:你可以为这次试验作个总结吗?

生:从这次试验可知绿豆的发芽率最高。

生:我从这次试验可知大蒜的发芽率最低。

生:我知道花生的发芽率比大蒜的发芽率高。

(有利于学生对百分数问题的进一步理解与学习。)

你们知道计算发芽率有什么作用呢?(生答,师小结)

师:同学们对比求达标率和发芽率,你能发现它们有共同的特点吗?

师:同学们发现的真多,求百分率的问题其实都有一个特点,都是部分量与整体的比较。

师:其实,现实生活中像达标率、发芽率这样的百分数还有很多很多,你还能举例出其他的百分率吗?试试看。

学生举例:学生的出勤率、产品的合格率、小麦的出粉率、花生的出油率等等,师板书。这些百分率怎么计算呢?小组同学商量一下。

学生以4人小组合作写百分率的公式。(组长负责作好记录并汇报。)

老师这里就有一个求花生出油率的问题,想去看看吗?出示做一做第2题。

学生做题汇报。

精明小法官:

1、学校上学期种了105棵花苗,现在全部都成活,这批花苗的成活率就是105%( )。

2、王师傅生产的98个零件,全部都检测合格,这些零件的合格率就是98%( )。

3、25克盐放入100克水中,盐水的含盐率是25%( )。

4、某工人加工了103个零件,有100个合格,这些零零件的合格是100%( )。

师:同学们,通过这节课的学习,你们有什么收获?

学生自由回答。

人教版六年级数学百分数教案篇七

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

一、复习

出示复习题。

1.根据题意列出算式:

5个12是多少?

3个14是多少?

2.下列句子中那些可以看做单位1

猎豹的速度是狮子的七分之三。

参加合唱队的同学占全班人数的五分之一。

红花比黄花多二分之一。

十月比九月节约四分之三。

3.计算:3/10 +3/ 10 + 3/10 =

3/10 + 3/10+ 3/10这题我们还可以怎么计算?

今天我们就来学习分数乘法。

二、新授

1、利用3/10 + 3/10 + 3/10教学分数乘法。

(1)这道加法算式中,加数各是多少?(都是3/10)

(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 ×3)

谁能把它补充完整

2、出示例1,

(1)理解题意:

引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的2/11 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(列式:2/11×3 = 6/11 )有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。

3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、练习:练习完成“做一做”第2题。

5、教学例2

(1)出示3/8×6,学生独立计算。

(3)学生通过自己的想法的来约分:a、先约分再计算;b、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

6.练一练,课件出示,学生独立计算。然后订正。

三、巩固练习

比赛:

第一回合

1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

第二回合

2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

四、课堂总结:

今天你有什么收获?

五、布置作业:练习二第1、2、4题。

人教版六年级数学百分数教案篇八

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷ 如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示 小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是 小时走的路程)

(3)引导学生讨论交流:已知 小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求 小时走了多少千米,也就是求2个 ,算式:2×

再求3个 小时走了多少千米,算式:2× ×3

(5) 综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算 ÷ ,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、p31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

教学后记

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制