中职一元一次不等式组教案 沪科版一元一次不等式组教案(5篇)
文件格式:DOCX
时间:2023-03-08 00:00:00    小编:高工要跑路

中职一元一次不等式组教案 沪科版一元一次不等式组教案(5篇)

小编:高工要跑路

作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。

中职一元一次不等式组教案 沪科版一元一次不等式组教案篇一

三角形的三边关系?

问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?

注:这个问题是本节的引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.

探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?

可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.

由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②

注:木条c必须同时满足两个条件,即ca+b,ca-b.

类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.

类比方程组的解,怎样确定不等式组中x的可取值的范围呢?

不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.

注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.

由不等式①解得x13.

由不等式②解得x7.

从图9.3―2容易看出,x可以取值的范围为713.

注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.

这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.

注:这里正式给出不等式组的.解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。

中职一元一次不等式组教案 沪科版一元一次不等式组教案篇二

一、知识结构

本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.

二、重点、难点分析

本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.

1、在构成不等式组的几个不等式中

①这几个一元一次不等式必须含有同一个未知数;

②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.

2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.

3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:

【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。

三、教法建议

1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的.过程一定要结合数轴来讲。

2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。

3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。

4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。

中职一元一次不等式组教案 沪科版一元一次不等式组教案篇三

1、理解一元一次不等式组的概念.

2、理解不等式组的解的概念.

3、会解由两个一元一次不等式组成的不等式组,并会用数轴确定解.

4、培养学生类比推理能力.

教学重点:一元一次不等式组的解法.

教学难点:例2较为复杂,几乎包括了解一元一次不等式的全部步骤,是本节教学的难点,用数轴表示一元一次不等式组的解也是难点。

1.想一想:某单位从超市购买了墨水笔和圆珠笔共15桶,所付金额超过570元,但不到580元。已知这两种笔每桶的单价为圆珠笔34.90元/支,墨水笔44.90元/支。设购买圆珠笔x桶,你能列出几个不等式?

2.学生活动:找出已知条件,列出所有不等关系式,互相讨论,类推概念,鼓励学生通过观察,分析,补充解决问题。

3.最后教师总结两个不等式。

如设购买圆珠笔的桶数为x,则:

1.一元一次不等式组:一般地,由几个同一个未知数的一元一次不等式所组成的`一组不等式,叫做一元一次不等式组。像上面就是一元一次不等式组,再

例如:

都是一元一次不等式组.

2.不等式组解的概念:组成不等式组的各个不等式的解的公共部分就是不等式组的解.当它们没有公共部分时.我们称这个不等式组无解.

3.做一做:

例1.解一元一次不等式组

解:解不等式①,得:

x>-1

解不等式②,

得:x≤6

把①②两个不等式的解表示在数轴上,如下图:

所以原不等式组的解是-1

4.应用拓展:解由两个一元一次不等式组成的不等式组,在取各个不等式的解公共部分时,有几种不同情况吗?

若a

用数轴试一试.(设a

口诀x>ax>bx>b大大取大x小小取小x>axb无解比小小,比大大,解不了(无解)

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制