长方体和正方体表面积教案实用
文件夹
在编写教案的过程中,教师需要考虑学生的认知特点和学习需求,以便更好地实施教学。教案的编写需要综合运用多种教学方法和手段,以促进学生的学习兴趣和主动性。以下是一些教育教学网站上分享的优秀教案,它们的内容丰富、结构合理。
(三)培养和发展学生的空间观念。
(二)确定长方体每一个面的长和宽。
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
1.口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
学生讨论。(把六个面展开放在一个平面上。)。
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。
(图像要验证相对的面相等,展示每个面对应的长和宽。)。
学生讨论后归纳,老师板书:
上下面:长×宽×2。
前后面:长×高×2。
左右面:高×宽×2。
学生口答老师板书:(或学生板书,同时其余同学填书上。)。
解法1:6×5×2+6×4×2+5×4×2。
=60+48+40。
=148(厘米2)。
解法2:(6×5+6×4+5×4)×2。
=(30+24+20)×2。
=74×2。
=148(厘米2)。
答:至少要用148厘米2纸板。
练一练:(投影片)一个长方体长4米,宽3米,高25米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)。
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面。列式:
学生:一个面的面积乘以6。
学生:棱长×棱长×6。
(2)试解下面的题。
例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。
请同学们填在书上,一位同学板书:
32×6。
=9×6。
=54(厘米2)。
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5。
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)。
用学生投影片集体订正。
1.口答课本p27:1。
2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)。
3.口答。判断正误,并说明理由。
(1)长方体的三角棱分别叫它的长、宽、高。()。
(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()。
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()。
(四)课堂总结及课后作业。
2.作业:课本p27:3,4,5。
长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。
教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。
本节新课教学分为三部分。
3、培养学生分析能力,发展学生的空间概念。
一、复习导入。
2、指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。
方法三:(上面的面积+前面的面积+左面的面积)×2。
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业。
1、完成教材第23页“做一做”。
2、完成教材第24页“做一做”。
3、完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结。
板书设计:
教学内容:
教学目标:
2、通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。
教学重点:
能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。
教学难点:
教具运用:
课件。
教学过程:
一、复习导入。
师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)。
1、做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?
2、一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
二、新课讲授。
1、教材25页第5题。
(2)学生读题,看图,理解题意。
(3)“上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)。
(4)学生尝试独立解答。
(5)集体交流反馈。
方法一:10×12×2+6×12×2=240+144=384(cm2)。
方法二:(10×12+6×12)×2=(120+72)×2=384(cm2)。
答:这张商标纸的面积至少需要384平方厘米。
2、教材26页第8题。
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)。
(2)学生读题,看图,理解题意。
(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)。
(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。
3×3×5=9×5=45(dm2)。
答:制作这个鱼缸时至少需要玻璃45平方分米。
三、课堂作业。
完成教材第26页练习六第9、10题。
四、课堂小结。
五、课后作业。
完成练习册中本课时练习。
板书设计:
1.口答课本p27:1。
2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)。
3.口答。判断正误,并说明理由。
(1)长方体的三角棱分别叫它的长、宽、高。()。
(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()。
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()。
(四)课堂总结及课后作业。
2.作业:课本p27:3,4,5。
5×2。
学生:一个面的面积乘以6。
教师:用棱长来表示它的表面积。
学生:棱长×棱长×6。
(2)试解下面的题。
例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。
请同学们填在书上,一位同学板书:
32×6。
=9×6。
=54(厘米2)。
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5。
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)。
用学生投影片集体订正。
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
3.培养学生分析能力,发展学生的空间概念。
长方体、正方体纸盒,剪刀,投影仪。
一、复习导入。
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和。
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。
方法三:(上面的面积+前面的.面积+左面的面积)×2。
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业。
1.完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结。
3.正确利用所学知识解决生活实际问题。
如何利用所学知识解决生活实际问题。
一、联系实际,揭示课题。
同学们,学校利用这个假期同学们休息的时间,要对我们的教室进行从新粉刷。
在粉刷之前,校方提前进行了资料收集,收集的资料如下:
1.每个教室的长8米,宽5米,高3米;
2.每个教室要对四壁和屋顶进行粉刷;
3.每个教室门窗的面积共20平方米;
4.每个教室要粉刷三次;
5.第一次粉刷每平米用涂料0.5千克;第二次和第三次粉刷每平米只用去涂料0.2千克。
6.我校共有个教室需要粉刷。你能根据校方收集的上述信息帮助校方计算出应该买多少涂料吗?(揭示课题)。
二、师生交流,提出问题。
师:同学们,看到这个课题,你想知道什么?
生1:什么叫表面积?
生3:学了这些知识有什么用处?
三、师生互动,探究问题。
1.学生操作,解决问题;
(1)请同学们拿出准备好的正方体纸盒,请将这个正方体纸盒沿着棱剪开。(学生操作)我们将正方体沿着棱剪开,就得到了一个正方体表面的展开图。
(出示学生得到的正方体表面的展开图。)。
(2)引导学生观察得到的正方体的展开图,思考:正方体表面的展开图有什么特征?
2.组内交流,发表见解;
(1)正方体表面的展开图有6个正方形的面组成。
(2)它们的形状都相同。
(3)它们的面积都相等。
3.教师引导,深入探究;
(1)想一想可以怎么求这6个面的面积总和。先求出1个面的面积,再乘以6,就是这6个面的面积总和。
(2)请你试着求一求你手中的正方体6个面的面积总和。
注意:先测量棱长的尺寸,再计算,取整厘米数。(学生计算)看书巩固,掌握方法;刚才我们计算的就是正方体的表面积,那什么是正方体的表面积?正方体的表面积可以怎么求呢?书上有具体的介绍,请打开书,翻到p39,看书回答:
四、巧加点拨,学而致用。
1、追随上知,质问质疑。
2、迁移知识,灵活运用。
学生利用所学方法推导长方体的表面积计算公式。
3、组际交流,发表见解。
4、看书小结,掌握方法。
请打开书,翻到p40,看书回答:
5、引用方法,灵活解答。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
学生讨论。(把六个面展开放在一个平面上。)。
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。
(图像要验证相对的面相等,展示每个面对应的长和宽。)。
学生讨论后归纳,老师板书:
上下面:长×宽×2。
前后面:长×高×2。
左右面:高×宽×2。
学生口答老师板书:(或学生板书,同时其余同学填书上。)。
解法1:6×5×2+6×4×2+5×4×2。
=60+48+40。
=148(厘米2)。
解法2:(6×5+6×4+5×4)×2。
=(30+24+20)×2。
=74×2。
=148(厘米2)。
答:至少要用148厘米2纸板。
练一练:(投影片)一个长方体长4米,宽3米,高2。
长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。
教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。
本节新课教学分为三部分。
1、长方体有()个顶点,有()条棱,有()个面,一般情况下()面的面积相等。
2、一个长方体的长是15厘米,宽是12厘米,高是8厘米,这个长方体的表面积是()平方厘米。
3、一个正方体的棱长是8分米,它的棱长总和是(),表面积是()。
5、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。
6、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的.面的长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米。
7、一个长方体的长是1米4分米,宽是5分米,高是5分米,这个长方体有()个面是正方形,每个面的面积是()平方分米;其余四个面是长方形的面积大小(),每个面的面积是()平方分米;这个长方体的表面积是()平方分米。
8、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()。
9、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。
2、培养学生分析、解决问题的能力,以及良好的思维品质。
能灵活地解决一些实际问题。
课件。
一、复习导入。
2、如果要求正方体的表面积,需要知道什么?怎样求?
二、课堂作业。
完成教材第26页第11~13题。
1、第11题。
(1)分析题目的已知条件和问题。
(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?
(3)列式解答。
4[86+(83+63)2-11.4]。
=4120.6=482.4(元)。
答:粉刷这个教室需要花费482.4元。
2、第12题。
这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的面积不能算在表面积里。
分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。
左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。
=(2200+2600+1600)2=12800(cm2)。
涂红油漆40652+40403=5200+4800=10000(cm2)。
答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。
3、第13题。
提示:把一个长方体从中间截断,就可以分成两个正方体。
让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。
小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。
三、课堂小结。
通过这节课的学习,你有什么收获?还有什么问题?
四、课后作业。
完成练习册中本课时练习。
2024年长方体和正方体的表面积教案(实用10篇)
文件夹