抽屉原理优质课教案(实用10篇)
文件格式:DOCX
时间:2023-03-08 00:00:00    小编:万众创薪

抽屉原理优质课教案(实用10篇)

小编:万众创薪

教案可以帮助教师合理安排教学内容,确保教学的系统性和连贯性。要编写一份较为完美的教案,首先要对教学目标进行明确和具体的规划。这些教案范文对于教师编写教案和改进教学方法都有很大的借鉴意义。

抽屉原理优质课教案篇一

我的几点看法:

最近我一直正在关注抽屉原理,刚好听了高玉东老师的这节课,我来谈一下我的几点看法。

一:我认为高老师的课三言两语直入主题,节省了时间,这是构建高效课堂的基础。有的老师讲课导入部分太长,浪费了时间,我们应该借鉴一下,缩短我们导入新课的时间。

二:过程清晰。高老师吃透了教材,把教学过程呢设计的由易到难,层层递进,是学生易于接受。这凸显了高老师把握教材的能力,使我感受很深,也是我今后努力的'方向。

三:我讲一下我的几点看法。我研究了抽屉原则的几个主要方面。

1.我认为在教学的过程中应结合具体的例题讲一下什么是至少,让学生先理解了至少的含义在具体的教学。抽屉原则这类的题我考过其他的成年人,他们刚读题时不理解至少的含义,所以做错了,我认为学生也不好理解,所以讲一下至少的含义再继续往下教学。

抽屉原理优质课教案篇二

学生的数学学习过程就是利用学生已经学过的只是和现在有的经验基础,然后理解更高更深更复杂的知识。数学强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的.运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。

只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。

不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。

抽屉原理优质课教案篇三

教学内容:

教科书第68、69页例1、2。

教学目标:

1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

教学重点:分配方法。

教学难点:分配方法。

教学方法:列举法、分析法。

学习方法:尝试法、自主探究法。

教学用具:课件。

教学过程:

(一)游戏引入。

1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

(二)揭示目标。

理解并掌握解决鸽巢问题的解答方法。

1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

(1)理解“总有”和“至少”的意思。

(2)理解4种放法。

2、全班同学交流思维的过程和结果。

3、跟踪练习。

68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(1)说出想法。

如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

(2)尝试分析有几种情况。

(3)说一说你有什么体会。

1、出示例2。

把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?

(1)合作交流有几种放法。

不难得出,总有一个抽屉至少放进3本。

(2)指名说一说思维过程。

如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

2、如果一共有8本书会怎样呢10本呢?

3、你能用算式表示以上过程吗?你有什么发现?

7÷3=2……1(至少放3本)。

8÷3=2……2(至少放4本)。

10÷3=3……1(至少放5本)。

4、做一做。

11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

1、鸽巢问题怎样求?

小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

2、做一做。

69页做一做2题。

(一)小结。

鸽巢问题的.解答方法是什么?

物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

(二)检测。

1、填空。

(1)7只鸽子飞进5个鸽舍,至少有()只鸽子要飞进同伴的鸽舍里。

(2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放()本书。

(3)四年级两个班共有73名学生,这两个班的学生至少有()人是同一月出生的。

(4)任意给出3个不同的自然数,其中一定有2个数的和是()数。

2、选择。

(1)5个人逛商店共花了301元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于()元。

a、60b、61c、62d、59。

(2)3种商品的总价是13元,每种商品的价格都是整数,至少有一种商品的价格不低于()元。

a、3b、4c、5d、无法确定。

3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?

完成课本练习十二第2、4题。

板书。

物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体。

抽屉原理优质课教案篇四

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

教学重、难点。

经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程。

向大家介绍一位德国数学家,狄利克雷,他在数学上的贡献涉及数学的各个方面,他痴迷于数学,关于他有一件趣事:他的第一个孩子出世时,向岳父写的信中只写上了一个式子:2+1=3。

今天我们就来学习狄利克雷首先明确提出来的抽屉原理。

齐读课件上的话。

下面让我们一起探究抽屉原理。

抽屉是做什么用的呢?-----放东西的板书抽屉。

有了放东西的,还要有什么?----要放的东西我们就假设要放的东西是苹果板书苹果。

下面我们就来研究往抽屉里放苹果,(1)苹果数抽屉数。

师解释:今天我们研究物品数比抽屉数多的情况,比如,7个苹果任意放入6个抽屉……。

(2)任意放………任意放是什么意思呢?

生:想怎么放就怎么放。

如果我们来把4个苹果任意放入3个抽屉会有几种放法呢?

学生发言,师点击课件。

判断:把4个苹果任意放入3个抽屉,总有抽屉比其他抽屉放的苹果多。(课件出示)。

指明判断并说出理由。(大家听明白他的发言了吗?)。

大家看老师把“总有”加圈圈了。

“总有”是什么意思?

生……。

师:总有就是肯定存在,抽屉原理就是对存在性的研究板书:存在性。

有的同学要说好简单,这就是抽屉原理吗?我告诉你,比其他抽屉放的苹果多的抽屉就是抽屉原理的研究对象.

第一种放法里我们要研究的抽屉是哪一个?

第二种放法里我们要研究的抽屉是哪一个?

第三种放法里我们要研究的抽屉是哪一个?

第四种放法里我们要研究的抽屉是哪一个?

研究对象我们已经找到了,研究什么呢?请看题.

把4个苹果任意放入3个抽屉,总有抽屉比其他抽屉放的苹果多。这个抽屉里至少有()个苹果。(课件出示)。

师:“至少有2个苹果是什么意思?”“至少有2个”加圈圈。

生:(也可能比2个苹果多)。

师:为什么比其他抽屉放的苹果多的抽屉里至少有2个苹果?

学生很自然说1、1、2的放法。

师:你为什么选择用这种方法说明至少放2个苹果,而不是其他三种呢?

生:其他三种都有空抽屉,做“至少”的结论没有说服力。

同学们,考虑最糟糕的情况这在数学上叫做“最不利原则”板书最不利原则。

师:谁能用一个除法算式来表示这种放法呢?

生4÷3=1……1。

师板书并问:4表示什么?板书苹果。

3表示什么?板书抽屉。

1表示什么?

1表示什么?

这个算式其实是在把4个苹果怎样分给3个抽屉?

生:平均分师板书:平均分。

课件:5个人中至少2人在同一个季节出生的.

这位算命先生算得准吗?为什么?

这个原则可以用一个什么算式表示呢?

生5÷4=1……1。

师板书并问:5表示什么?板书苹果。

4表示什么?板书抽屉。

1表示什么?这个1表示什么?

怎样得到至少几人在同一个季节出生?1+1=2。

刚才算命先生的判断中什么相当于苹果?什么相当于抽屉?

我给大家介绍抽屉原理时说,抽屉原理也叫做鸽巢原理。

下面的练习就用鸽子和鸽笼。

课件6只鸽子飞回5个笼子,至少有2只鸽子飞进同一个笼子。为什么?

什么相当于苹果?

什么相当于抽屉?

用一个什么算式表示呢?

生6÷5=1……1……。

师:一个抽屉里至少放几个苹果与什么有关?

生:与苹果数量和抽屉数量有关。

师:这几个算式有什么共同特点?

生:苹果总比抽屉多一个。

那么如果改变苹果总比抽屉多一个的条件,你还能找出一个抽屉里至少放几个苹果吗?下面我们继续研究抽屉原理.

7只鸽子飞回5个笼子,至少有()只鸽子飞进同一个笼子。为什么?

课件演示。

用一个什么算式表示呢?

生7÷5=1……21+1=2。

把5本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进()本书。这是为什么?

用一个什么算式表示呢?

生5÷2=2……12+1=3。

8只鸽子飞回3个笼子,至少有()只鸽子飞进同一个笼子。为什么?

用一个什么算式表示呢?

生8÷3=2……22+1=3。

你发现什么规律了呢?

一个抽屉里至少放几个苹果与什么有关?

生:与苹果数量和抽屉数量有关。

引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(课件返回配合演示)。

总结:苹果除以抽屉数,再用所得的商加1。

板书:商加1。

2、要保证有2种不同花色至少抽多少张?

生:5张牌。

若不除去大小王,从中随意抽几张牌,总有两张牌是同一花色的?

4、若不除去大小王,要保证有2种不同花色至少抽多少张?

板书设计:。

抽屉原理研究:存在性问题。

方法:平均分。

依据:最不利原则。

苹果抽屉至少。

4÷3=1……12。

5÷4=1……12。

6÷5=1……12。

7÷5=1……22。

5÷2=2……13。

8÷3=2……23。

抽屉原理优质课教案篇五

“电脑算命”看起来挺玄乎,只要你报出自己出生的年、月、日和性别,一按按键,屏幕上就会出现所谓性格、命运的句子,据说这就是你的“命”。

其实这充其量不过是一种电脑游戏而已。我们用数学上的抽屉原理很容易说明它的荒谬。

抽屉原理又称鸽笼原理或狄利克雷原理,它是数学中证明存在性的一种特殊方法。举个最简单的例子,把3个苹果按任意的方式放入两个抽屉中,那么一定有一个抽屉里放有两个或两个以上的苹果。这是因为如果每一个抽屉里最多放有一个苹果,那么两个抽屉里最多只放有两个苹果。运用同样的推理可以得到:

原理1把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

原理2把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。

如果以70年计算,按出生的年、月、日、性别的不同组合数应为70×365×2=51100,我们把它作为“抽屉”数。我国现有人口11亿,我们把它作为“物体”数。由于1.1×=21526×51100+21400,根据原理2,存在21526个以上的人,尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的“命”,这真是荒谬绝伦!

在我国古代,早就有人懂得用抽屉原理来揭露生辰八字之谬。如清代陈其元在《庸闲斋笔记》中就写道:“余最不信星命推步之说,以为一时(注:指一个时辰,合两小时)生一人,一日生十二人,以岁计之则有四千三百二十人,以一甲子(注:指六十年)计之,止有二十五万九千二百人而已,今只以一大郡计,其户口之数已不下数十万人(如咸丰十年杭州府一城八十万人),则举天下之大,自王公大人以至小民,何啻亿万万人,则生时同者必不少矣。其间王公大人始生之时,必有庶民同时而生者,又何贵贱贫富之不同也?”在这里,一年按360日计算,一日又分为十二个时辰,得到的.抽屉数为60×360×12=259200。

所谓“电脑算命”不过是把人为编好的算命语句象中药柜那样事先分别一一存放在各自的柜子里,谁要算命,即根据出生的年月、日、性别的不同的组合按不同的编码机械地到电脑的各个“柜子”里取出所谓命运的句子。这种在古代迷信的亡灵上罩上现代科学光环的勾当,是对科学的亵渎。

抽屉原理优质课教案篇六

1、理解最简单的抽屉原理及抽屉原理的一般形式。

2、引导学生采用操作的方法进行枚举及假设法探究。

经历抽屉原理的`探究过程,初步了解抽屉原理。

体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。

经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

(一)教学例1。

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。

问题:

(1)“总有”是什么意思?(一定有)。

(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)。

学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)。

抽屉原理优质课教案篇七

“抽屉原理”是开发智力,开阔视野的数学思维训练资料,对于一部分想象潜力较弱的学生来说学起来存在必须的困难。透过本次课堂实践,有几点体会:

1、创设情境,调动学生的学习用心性。课前让几个学生表演“抢椅子”的游戏:如3个人抢坐2把椅子、4个人抢坐3把椅子。让学生在活动中初步感知抽象的“抽屉原理”,理解“至少”的意思。

2、合作交流,建立模型。根据课前的表演及老师的分苹果演示,交流、讨论理解:“待分物体数”、“抽屉数”、“至少数”分别指什么?“至少数”为什么是商加1,而不是商加余数?透过老师的提示、引领,学生对“抽屉原理”基本上能理解,但是要让学生用简练的语言表达出来还有必须的困难。

3、培养学生的“模型”思想,提高解题潜力。“抽屉原理”的问题变式很多,应用更具灵活性。能否将一个具体问题和“抽屉原理”联系起来,能否找出题中什么是“待分物体数”,什么是“抽屉”,是解题的关键。有时候找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了也很难确定用什么作“抽屉”。教学时,我但是于强调说理的严密性,只要学生能把大致意思说出来就行,有些题目能借助实物或用枚举法举例猜测、验证也能够。

回顾整节课我觉得主要存在两个问题:1、在学生体验数学知识的产生过程中,老师担心学生不理解、走错路,不敢大胆放手,总是牵着学生的思路走。2、这部分资料属于思维训练的资料,有少部分学生学起来困难大,效果差。在课堂上如何更好地发挥学生的主体性,如何关注学困生的同步发展,我们将继续寻找方法。

抽屉原理优质课教案篇八

抽屉原理是人教版数学六年级下册的知识。作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带动学生的.思考。在充分活动的基础上理解总有与至少的含义。如进行坐椅子游戏,5个人坐在4把椅子上,不管怎样坐,总有一把椅子上至少有2个人。又如,4个桃子放在3个盘子里,不管怎样放总有一个盘子里至少有2个桃子。3支笔放进2个笔筒里,不管怎样放,总有一个笔筒里至少有2支笔。多次操作,分一分,描一描,说一说等活动体会总有与至少的含义,这些知识有只可意会不可言传的感觉。在建模后在分析具体问题时,先让学生说说把什么放在什么地方,体会待分物体与抽屉的关系,这样才能更好的找到至少数。

抽屉原理优质课教案篇九

一、填空。(20分)。

(1)5、2、9可以摆出()个不同的三位数。

(2)六(1)班有25人参加了语文和数学兴趣小组。参加语文兴趣小组的有15人,参加数学兴趣小组的有18人,语数兴趣小组都参加的有()人。

(3)48名学生做游戏,大家围成一个三角形,每边人数相等,三个顶点都有人,每边各有()名学生。(4)时钟6时敲响6下,10秒钟敲完。10时敲响10下,需要)秒。(5)9个零件中有1件是次品(次品轻一些)用天平称,至少()次就一定能找出次品来。

(6)笼子里有若干只鸡和兔。从上面数10个头,从下面数34只脚,鸡有()只,兔有()只。(7)有黄、红两种颜色的球各4个,放到同一个盒子里,至少取()个球可以保证取到2个颜色相同的球。

(8)把5颗梨放在4个盘子里,总有()个盘子至少要放2颗梨。(9)一串彩灯按照“红、黄、蓝、绿”的规律排列着,第8个彩灯是()颜色,第25个彩灯是()色。

(10)两个点可以连成()条线段,三个点可以连成()条线段。

二、解决问题。(50分)。

1、在的班中,至少多少人中,一定有2个人的生日在同一个月?

2、你所在的班中,至少有多少人的生日在同一个月?

3、32只鸽子飞回7个鸽舍,至少有几只鸽子要飞进同个鸽舍?

4、在街上任意找来50个人,可以确定,这50人中至少有多少个人的属相相同?

7、幼儿园买来不少猴、狗、马塑料玩具,每个小朋友任意选择两件,那么至少几个小朋友中才能保证有两人选的玩具相同。

8、一个布袋里有红色、黄色、蓝色袜子各10只,问最少要拿多少只才能保证其中至少有2双颜色不相同的袜子。

三、加分题:(30分)。

2、5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的.颜色的配组是一样的。

3、五年级有49名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问至少有名学生的成绩相同。

4、2、4、6、?、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

5、学校组织了象棋、绘画和舞蹈兴趣小组,小a、小b和小c分别参加了其中一项。小a不喜欢象棋,小b不是舞蹈小组的,小c喜欢绘画。画一个表来帮忙,把信息记录下来,再进行推理。小a参加()组,小b参加()组,小c参加()组。

抽屉原理优质课教案篇十

教学过程:

一、创设情景,导入新课。

师带领学生玩“抢椅子”的游戏,规则这4位学生必须都坐下。引导学生观察游戏结果--不管怎么坐,总有一个座位上至少坐了2位同学。

师:为什么?(学生回答)。

师:可不可能一个椅子上坐3位同学?(可能)可不可能每个椅子上只坐1位同学?(不可能)也就是说,不管怎么坐,总有一个椅子上至少要坐2位同学。

师:那么像这样的现象中隐藏着设么数学奥秘呢?大家想不想弄明白?好,就让我们一起走进数学广角来研究这个原理。希望大家都能积极的动手动脑,参与到学习活动中来,齐心协力把这个数学奥秘弄懂!

二、探究新知。

(一)教学例1。

1、出示题目:把4枝铅笔放进3个文具盒里。

(学情预设:不管怎么放,总有一个文具盒里至少放进了2枝铅笔。)。

2、理解“至少”

师:“至少”是什么意思?如何理解呢?

(最少2枝,也可能比2枝多)。

师:到底我们猜测的对不对呢?怎么样证明这种现象呢?下面,就需要自己动手利用学具去摆一摆,动脑去想一想,看看能不能证明我们这个猜想。

3、自主探究。

(1)两人一组利用手中的学具1摆一摆,想一想,可以怎么样去摆放?老师帮大家准备了一个记录单,你们可以把摆放的不同方法记录下来,以便你们分析结果是不是符合我们之前的猜测。

(2)全班交流,学生汇报。

第一种方法:

(4,0,0)(3,1,0)(2,2,0)(2,1,1)学生解释自己的想法,验证猜测。

教师课件演示,验证结论。(像大家刚才这样把每一种放法都列举出来,然后去一一验证,这种方法叫列举法)。

第二种方法:

师:还有别的思考方法,来验证我们之前的猜测吗?

假设法:(学生汇报)。

师课件演示,说明:先假设每个文具盒里各放入1枝铅笔,余下1枝铅笔不管放进哪个文具盒里,一定会出现“总有一个文具盒里至少有2枝铅笔”的现象。

4、优化方法。

那么把5枝铅笔放进4个文具盒里,会怎样呢?

那么把6枝铅笔放进5个文具盒里,会怎样呢?

那么把7枝铅笔放进6个文具盒里,会怎样呢?

那么把100枝铅笔放进99个文具盒里,会怎样呢?

(学生解释说明,师课件演示)。

师:你们为什么都用第二种方法,而不用列举法呢?

5、发现规律。

师:通过刚才我们分析的这些现象,你发现了什么?

(当笔的枝数比铅笔盒数多1时,不管怎么放,总有一个文具盒里至少放2枝铅笔。)。

6、出示做一做:7只鸽子飞回5个鸽舍,至少有()只鸽子要飞进同一个鸽舍里?

(1)学生独立思考,可以自己想办法解决。

(2)全班汇报,解释说明。

(3)教师用课件演示(虽然鸽子的只数比鸽舍的数量多2,但是也是至少有2只鸽子要飞进同一个鸽舍里。)。

(二)教学例2。

1、出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?

2、学生利用学具探究。

3、学生汇报,教师课件演示。

如果把我们的这种思维方法用式子表示出来,该怎样列式?

5÷2=2…..1(3)。

4、拓展:把7本书放进2个抽屉里呢?

把9本书放进2个抽屉里呢?用式子怎么表示?

7÷2=3….1(4)。

9÷2=4…1(5)。

师:同学们观察这些板书,你发现了什么规律吗?

(商+余数)(商+1)。

5、做一做:8只鸽子飞回3个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。为什么?

学生独立思考,汇报交流。板书式子:8÷3=2…2(2+1=3)。

教师课件演示:至少有3只鸽子要飞进同一个鸽舍里,所以应该是商加1.

(三)结论。

师:同学们,真的非常厉害,刚才我们一起探究的这种现象,就成为“抽屉原理”

课件出示。

三、拓展应用。

“抽屉原理”在现实生活中引用也是非常广泛的。下面,老师再带大家做一个小游戏。扑克牌游戏。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制