在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
数学做辅助线的方法和技巧篇一
“兴趣是最好的老师”,“没有兴趣的学习,无异于一种苦役;没有兴趣的地方,就没有智慧和灵感。”入迷才能叩开思维的大门,智力和能力才能得到发展。作为老师,要善于诱发孩子的学习兴趣。
1、以生动的实例,描述枯燥的概念,使比较抽数学知识,利用数学知识,来提高孩子学习的兴趣。
2、利用思辨问题或实验结论作引导。这样既可激发孩子的学习兴趣又可启发孩子的思考。
3、提出矛盾的问题,引起学生的疑惑。 学生产生疑惑,探求真理的愿望,也是激发学习兴趣的手段之一。
4、诱发求知欲。 学生对新知识的渴求,想对未知事物的了解,是激发学习兴趣的一个契点。
二、发散思维能力
创造性思维的发展,在教学中也是尤其重要的。而发散思维却正好反映了创造性思维“尽快联想,尽多作出假设和提出多种解决问题方案”的特点,因而成为创造性思维的一种主要形式。在小学数学教学的过程中,在培养学生初步的逻辑思维能力的同时,也要有意识地培养学生的发散思维能力。
1、诱导乐于求异的心理倾向。
对于孩子在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使孩子真切体验到自己求异成果的价值。对于学生欲寻异解而不能时,老师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从另一个角度分析一下!”的求异思考。
2、诱导变通。
变通,是发散思维的显著标志。要对问题实行变通,只有在摆脱习惯性思考方式的束缚,不受固定模式的制约以后才能实现。因此,在学生较好地掌握了一般方法后,要注意诱导学生离开原有思维轨道,从多方面思考问题,进行思维变通。当学生思维闭塞时,教师要善于调度原型帮助学生接通与有关旧知识和解题经验的联系,作出转换、假设、化归、逆反等变通,产生多种解决问题的设想。
3、鼓励独创。
在分析和解决问题的过程中,孩子能别出心裁地提出新异的想法和解法,这是思维独创性的表现。尽管小学生的独创从总体上看是处于低层次的,但它却蕴育着未来的大发明、大创造,老师应满腔热情地鼓励他们别出心裁地思考问题,大胆地提出与众不同的意见与质疑,独辟蹊径地解决问题,这样才能使孩子思维从求异、发散向创新推进。
4、多形式的训练。
在小学数学教学辅导过程中,老师可结合教学内容和学生的实际情况,采取多种形式的训练,培养孩子思维的敏捷性和灵活性,以达到诱导孩子思维发散,培养发散思维能力的目的。一题多变:对题中的条件、问题、情节作各种扩缩、顺逆、对比或叙述形式的变化,让孩子在各种变化了的情境中,从各种不同角度认识数量关系。 一图多问:引导孩子观察同一事物时,要从不同的角度、不同的方面仔细地观察,认识事物,理解知识。 一题多议:提供某种数学情境,调度学生多方面的旧知、技能或经验,组织议论,引起思维火花的撞击。一题多解:在条件和问题不变的情况下,让学生多角度、多侧面地进行分析思考,探求不同的解题途径。
数学做辅助线的方法和技巧篇二
(1)连对角线或平移对角线;
(2)过顶点作对边的垂线构造直角三角形;
(5)过顶点作对角线的垂线,构成线段平行或三角形全等。
数学做辅助线的方法和技巧篇三
1.把复习课当“新课”。
这么做,是促使你在上复习课的时候也能够像上新课一样积极思考,并且大胆地把想法和思路说出来。尤其是针对自己薄弱的学科,更应如此。说错了不要紧,如果说对了,得到老师的肯定,反而能够增强信心。
2.从“例题”中淘金。
准备了一个笔记本,但并不记录知识点、考点,而是记录例题,从例题中着手,掌握好每一种题型的解题方法。复习中就紧扣例题,掌握的题目一次过目,碰到难题就多研习几遍,直到弄懂为止。
3.把整理笔记当复习。
复习课堂上,老师的板书往往比较零乱,需要整理。而其实,整理笔记的过程也正是一次很好的复习过程。怎么整理笔记?提纲挈领这是很多同学的做法,不过这是中庸之道;而把方法和容易出错之处整理清楚,一目了然,才是上策。
数学做辅助线的方法和技巧篇四
课本上讲的定理,你可以自己试着自己去推理。这样不但提高自己的证明能力,也加深对公式的理解。还有就是大量练习题目。下面是小编为大家整理的关于自学高中数学的方法,希望对您有所帮助。欢迎大家阅读参考学习!
思维方法向理性层次跃迁 :高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
及时了解、掌握常用的数学思想和方法 :学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
逐步形成 “以我为主”的学习模式 :数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
听的习惯。当前 国课堂教学方式,普遍以教师讲授为主。尤其是小学教育,教师讲得多,而且非常具体、细致。这就要求一年级新生首先要过“听力关”。 们可以算一笔小账:从小学到高中一共12年,假如一天上6节课的话,除掉节假日,12年至少要听两万多节课。可以说,学生学习过程的中心环节就是听课。如果上课走神,不专心听讲,后果可想而知。因此,家长一定要对孩子进行“听课”教育,使其充分认识“听课”的重要性,培养认真听讲的好习惯。
看的习惯。这里 所强调的“看”,主要是指“看书”。现在的孩子看电视时间过多,必须加以限制;同时,把孩子的注意力吸引到书本上来。 曾对某小学一年新生进行识字情况调查,最少的学生也认识300多个汉字。家长要引导孩子自己看书,除了对课本进行正常的预习、复习外,还要扩大孩子的阅读面。选择一些适合孩子年龄、心理特点的图文并茂的读物,比如童话故事、科学画报等。提高孩子阅读能力、理解能力的同时,间接地培养学习兴趣。
看的习惯。这里 所强调的“看”,主要是指“看书”。现在的孩子看电视时间过多,必须加以限制;同时,把孩子的注意力吸引到书本上来。 曾对某小学一年新生进行识字情况调查,最少的学生也认识300多个汉字。家长要引导孩子自己看书,除了对课本进行正常的预习、复习外,还要扩大孩子的阅读面。选择一些适合孩子年龄、心理特点的图文并茂的读物,比如童话故事、科学画报等。提高孩子阅读能力、理解能力的同时,间接地培养学习兴趣。
课前预习能提高听课的针对性。 预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。
听课过程中的科学。首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。其次就是听课要全神贯注。 全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。 耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。 眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势等动作,生动而深刻的接受老师所要表达的思想。 心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。 口到:就是在老师的指导下,主动回答问题或参加讨论。 手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。 若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。
特别注意讲课的开头和结尾。讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
数学自学方法技巧相关文章:
1.最实用的数学学习方法50条
2.学习数学的五大方法
4.如何快速掌握数学技巧
6.数学六大学习方法三大复习技巧
7.初中数学学习方法总结,数学的六大方法技巧!
8.数学自学方法指导
9.关于数学的学习技巧
数学做辅助线的方法和技巧篇五
(1)有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
(2)含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
(3)结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
(4)结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
(1)连对角线或平移对角线;
(2)过顶点作对边的垂线构造直角三角形;
(5)过顶点作对角线的'垂线,构成线段平行或三角形全等。
(1)在梯形内部平移一腰;
(2)梯形外平移一腰;
(3)梯形内平移两腰;
(4)延长两腰;
(5)过梯形上底的两端点向下底作高;
(6)平移对角线;
(7)连接梯形一顶点及一腰的中点;
(8)过一腰的中点作另一腰的平行线;
(9)作中位线。
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。
(1)见弦作弦心距。有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。
(2)见直径作圆周角。在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
(3)见切线作半径。命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
(4)两圆相切作公切线。对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
(5)两圆相交作公共弦。对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。
数学做辅助线的方法和技巧篇六
一、理解问题要深刻
读题是理解题和解决问题的前提,要反复读题,加深理解。但常常有这样的同学,读完题后还未完全理解题意便忙于解题,于是就出现理解不出来或解错题的情况,欲速则不达。
二、不要盲目列方程
用方程解题的最大好处就是可以用字母代替未知数,在考虑数量关系时,未知数与已知数始终处于平等地位,可以直接参加列式和计算,便于把题目中的数量关系直接地反映出来,从形式上看,它比列算术式要简便。如此说来,是不是在解题时我们就应一味地去追求列方程呢?实际并非如此。
这些题进一步说明列方程解题并不一定是最好的选择。
通过以上几道例题的分析比较可以看出,很多数学题用算术方法求解要比用代数方法求解简便得多,而且用算术的方法分析问题能很好地锻炼同学们的思维,使自己的头脑越来越灵活,有利于智力的开发。所以,在小学阶段,应尽可能使用算术方法去思考问题,而不要盲目追求列方程。
三、分析错误原因
对错误的解答,要能够认真分析错误原因。搞清楚是理解题意有误还是计算错误,是考虑问题不全面还是解题思路有问题。认真反思,吸取教训,你离成功就不远了。
(一)篡改试题
就是把题目改了再做,当然你不是故意这样的`。同学们在考试时常受一些曾经似乎做过的题的影响,这个见过,那个见过,就顺着记忆做下去了,实际上由于其中一个条件或关键词的改变或数据的改变,编排顺序的改变等已使题目变得与原题大不相同了,因此在审题时一定要认真,再认真,条件是什么?条件与条件之间的关系是什么?数据又是什么?与问题有怎样的联系?这些都需要思索一番的,我们在教学过程中一般都强调同学们画图、列条件、标数据、写等量关系等,把题目中提供的信息,通过自己的大脑再在草稿纸上表现出来,这样不易遗漏。当然这些都存在一个时间和效率问题,在考试时是不容你花大量的时间琢磨的,要在有限的时间内把题意掌握清楚,争取不受原来那些题的干扰。
当然,类似的情况太多了,你只要不受“老朋友”的影响,以为做过就轻视它。考试时,把关键落实到审题上,通过自己的努力,这些还是可以避免的。
(二)“答非所问”。
这一错误的产生是由于同学们在解题时关注点不全面,想了这个忘了那个。我仔细分析,大致情况是这样:在每道题中都有一个赛点,或者说是一个难点,有些题是出现连续的几个赛点,一般同学们在突破赛点,解决难点后是非常兴奋的,我懂了,我会了,我明白,给自己的感觉是这道题的分数唾手可得,就什么都不顾了,问乙多少答成了丙多少,问多多少答成了总数是多少,问男比女答成了女比男……有同学感叹:我怎么忘了乘以3了呢?我怎么最后没加起来呢?……这种情况比比皆是。
因此,同学们在做题尤其是考试时,既要有一定的兴奋来刺激大脑思维的活跃,也要以相当的冷静来分析全题的道道机关,弄清出题人的意图,它要考你什么知识点,用什么方法,赛点在哪儿。不要因为题目似乎见过,难点已经突破而忘乎所以。在考试解题时首先能做到这两点,你的数学成绩一定会有大幅提高。
(三)“丢三落四”
“丢三落四”这是最常见的错误,对于考虑问题不全面不周到的例子,我在很多专题课上讲到过。而对于一题多答案的试题在各重点中学的招生考试题中十分常见。
(四)“理解有误”
较多的错误,还是开篇提到的理解的误区,如下题中提高的效率都是针对当时的实际情况22分钟完成而言,而非针对计划20分钟而言。
(五)“唉!就是算不准”
最多的错误,就在于计算了,列对式子算错数,抄错数,答错数的例子比比皆是,也许上面的16个题的计算中你就已经出现了多次,你也能帮我举几个算不准的例子了。