最新八年级下册数学知识点总结(大全14篇)
文件格式:DOCX
时间:2023-04-21 00:00:00    小编:大狗外贸

最新八年级下册数学知识点总结(大全14篇)

小编:大狗外贸

总结是对过去一段时间内的经历和成果进行回顾和总结的必要环节。总结时要注意逻辑性和条理性,通过合理的分段和段落之间的过渡,使文章更易读懂。总结范文中的案例和事例丰富多样,增加了总结的实用性和可信度。

八年级下册数学知识点总结篇一

二.知识概念。

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)。

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形。

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

八年级下册数学知识点总结篇二

圆上任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;。

大于半圆弧的弧叫优弧,小于半圆弧的弧叫做劣弧;。

由弦及其所对的弧组成的图形叫做弓形。

(1)当两圆外离时,dr_+r;。

(2)当两圆相外切时,d=r_+r;。

(3)当两圆相交时,r_-r。

(4)当两圆内切时,d=r_-r(rr);。

(4)当两圆内含时,d。

其中,d为圆心距,r、r分别是两圆的半径。

如何判定四点共圆,我们主要有以下几种方法:

(1)到一定点的距离相等的n个点在同一个圆上;。

(2)同斜边的直角三角形的各顶点共圆;。

(3)同底同侧相等角的三角形的各顶点共圆;。

(4)如果一个四边形的一组对角互补,那么它的四个顶点共圆;。

(5)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆;。

(7)四边形abcd的一组对边ab、dc的延长线相交于点p,若pa_*pb=pc_*pd,则它的四个顶点共圆。

当告诉了一条直径,一般通过作直径上的圆周角,利用直径所对的圆周角是直角这一。

条件来证明问题.

当告诉圆心和弦,一般通过过圆心作弦的垂线,利用弦心距平分弦这一条件证明问题.

当含有切线这一条件时,一般通过把圆心和切点连起来,利用切线与半径垂直这一性。

质来证明问题.

当已知条件含有直角,往往通过过圆上一点作直径,利用直径所对的圆周角为直角这。

一性质来证明问题.

当已知条件中含两圆相切这一条件,往往通过过这个切点作两圆的公切线,通过公切。

线找到两圆之间的关系.

当含有两圆相交这一条件时,一般通过作两圆的公共弦,由两圆的弦之间的关系,找。

出两圆的角之间的关系.

若已知中告诉两圆相交或相切,一般通过作两圆的'连心线,利用两相交圆的连心线垂直。

平分公共弦或;两相切圆的连心线必过切点来证明问题.

若题中告诉了我们半径,往往通过过半径的外端作圆的切线,利用半径与切线垂直或利。

用弦切角定理来证明问题.

题中告诉两个圆相交,其中一个圆过另一个圆的圆心,往往除了通过作两圆的公共弦外,

还可以通过作圆的半径,利用同圆的半径相等来证明问题.

当题中涉及到圆的切线问题(无论是计算还是证明)时,通常需要作辅助线。一般地,

有以下几种添加辅助线的作法:

(1)已知一直线是圆的切线时,通常连结圆心和切点,使这条半径垂直于切线.

(2)若已知直线经过圆上的某一点,需要证明某条直线是圆的切线时,往往需要作出经。

过这一点的半径,证明直线垂直于这条半径,简记为“连半径,证垂直”;若直线与圆的公。

共点没有确定,则需要过圆心作直线的垂线,得到垂线段,再通过证明这条垂线段的长等。

于半径,来证明某条直线是圆的切线.简记为“作垂直,证半径”.

八年级下册数学知识点总结篇三

1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。

2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。

3、能够看出折线统计图所提供的信息,并回答相关的问题。

补充内容:

1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。

2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。

课后练习。

1.统计学的基本涵义是(d)。

a.统计资料。

b.统计数字。

c.统计活动。

d.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。

2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(b)。

a.每一个国有工业企业。

b.该地区的所有国有工业企业。

c.该地区的所有国有工业企业的生产经营情况。

d.每一个企业。

3.要了解20个学生的学习情况,则总体单位是(c)。

a.20个学生。

b.20个学生的学习情况。

c.每一个学生。

d.每一个学生的学习情况。

4.下列各项中属于数量标志的是(b)。

a.性别。

b.年龄。

c.职称。

d.健康状况。

5.总体和总体单位不是固定不变的,由于研究目的改变(a)。

a.总体单位有可能变换为总体,总体也有可能变换为总体单位。

b.总体只能变换为总体单位,总体单位不能变换为总体。

c.总体单位不能变换为总体,总体也不能变换为总体单位。

d.任何一对总体和总体单位都可以互相变换。

6.以下岗职工为总体,观察下岗职工的性别构成,此时的标志是(c)。

a.男性职工人数。

b.女性职工人数。

c.下岗职工的性别。

d.性别构成。

【抽样调查】。

(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。

(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。

(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。

(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。

课后练习。

1.抽样成数是一个(a)。

a.结构相对数b.比例相对数c.比较相对数d.强度相对数。

2.成数和成数方差的关系是(c)。

a.成数越接近于0,成数方差越大b.成数越接近于1,成数方差越大。

c.成数越接近于0.5,成数方差越大d.成数越接近于0.25,成数方差越大。

3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(b)。

a.全面调查b.非全面调查c.一次性调查d.经常性调查。

4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(a)。

a.40%b.4.13%c.9.18%d.8.26%。

5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(b)。

a.甲产品大b.乙产品大c.相等d.无法判断。

八年级下册数学知识点总结篇四

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

3整数指数幂的加减乘除法。

4分式方程及其解法。

第二章反比例函数。

1反比例函数的表达式、图像、性质。

图像:双曲线。

表达式:y=k/x(k不为0)。

性质:两支的增减性相同;

2反比例函数在实际问题中的应用。

八年级下册数学知识点总结篇五

2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

4、通分的依据:分式的基本性质。

5、通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

6、类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

9、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

11、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。

12、作为最后结果,如果是分式则应该是最简分式。

八年级下册数学知识点总结篇六

平行四边形的定义、性质及判定.

1.两组对边平行的四边形是平行四边形.

2.性质:

(1)平行四边形的对边相等且平行;。

(2)平行四边形的对角相等,邻角互补;。

(3)平行四边形的对角线互相平分.

3.判定:

(1)两组对边分别平行的四边形是平行四边形:

(2)两组对边分别相等的四边形是平行四边形;。

(3)一组对边平行且相等的四边形是平行四边形;。

(4)两组对角分别相等的四边形是平行四边形:

(5)对角线互相平分的四边形是平行四边形.

4·对称性:平行四边形是中心对称图形.

矩形的定义、性质及判定.

1-定义:有一个角是直角的平行四边形叫做矩形.

2·性质:矩形的四个角都是直角,矩形的对角线相等。

3.判定:

(1)有一个角是直角的平行四边形叫做矩形;。

(2)有三个角是直角的四边形是矩形:

(3)两条对角线相等的平行四边形是矩形.

4·对称性:矩形是轴对称图形也是中心对称图形.

菱形的定义、性质及判定.

1·定义:有一组邻边相等的平行四边形叫做菱形.

(1)菱形的四条边都相等;。

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角。

(3)菱形被两条对角线分成四个全等的直角三角形.

(4)菱形的面积等于两条对角线长的积的一半:

2.s菱=争6(n、6分别为对角线长).

3.判定:(1)有一组邻边相等的平行四边形叫做菱形。

(2)四条边都相等的四边形是菱形;。

(3)对角线互相垂直的平行四边形是菱形.

4.对称性:菱形是轴对称图形也是中心对称图形.

正方形定义、性质及判定.

1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

2.性质:(1)正方形四个角都是直角,四条边都相等;。

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;。

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;。

(4)正方形的对角线与边的夹角是45。;。

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

3.判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等;。

(2)先判定一个四边形是菱形,再判定出有一个角是直角.

4.对称性:正方形是轴对称图形也是中心对称图形.

梯形的定义、等腰梯形的性质及判定.

1.定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯。

形.一腰垂直于底的梯形是直角梯形.

2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等.

3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形.

4.对称性:等腰梯形是轴对称图形.

质数和合数应用。

1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。

2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

如何提高学习效果。

课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到。

心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。

八年级下册数学知识点总结篇七

在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性。

3、四边形的内角和定理及外角和定理。

四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n?2)?180°;。

多边形的外角和定理:任意多边形的外角和等于360°。

发能引(n-3)条对角线,将n边形分成(n-2)个三角形。

平行四边形。

1、平行四边形的定义。

两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质。

(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等。

(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段。

的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定。

(1)定义:两组对边分别平行的四边形是平行四边形。

(2)定理1:两组对角分别相等的四边形是平行四边形。

(3)定理2:两组对边分别相等的四边形是平行四边形。

(4)定理3:对角线互相平分的四边形是平行四边形。

(5)定理4:一组对边平行且相等的四边形是平行四边形。

4、两条平行线的距离。

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。

5、平行四边形的面积。

s平行四边形=底边长×高=ah。

八年级下册数学知识点总结篇八

一.每周干家务活的时间。

1.所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;。

从总体中取出的一部分个体叫做这个总体的一个样本.

2.为一特定目的而对所有考察对象作的全面调查叫做普查;为一特定目的而对部分考察对象作的调查叫做抽样调查.

二.数据的收集。

1.抽样调查的'特点:调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.

而估计值是否接近实际情况还取决于样本选得是否有代表性.

第六章证明(一)。

一.定义与命题。

1.一般地,能明确指出概念含义或特征的句子,称为定义.

定义必须是严密的.一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现.2.正确的命题称为真命题,错误的命题称为假命题.

3.数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.

4.有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.

5.根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.

二.为什么它们平行。

1.平行判定公理:同位角相等,两直线平行.(并由此得到平行的判定定理)。

2.平行判定定理:同旁内互补,两直线平行.

3.平行判定定理:同错角相等,两直线平行.

三.如果两条直线平行。

1.两条直线平行的性质公理:两直线平行,同位角相等;。

2.两条直线平行的性质定理:两直线平行,内错角相等;。

3.两条直线平行的性质定理:两直线平行,同旁内角互补.

四.三角形和定理的证明。

1.三角形内角和定理:三角形三个内角的和等于180°。

2.一个三角形中至多只有一个直角。

3.一个三角形中至多只有一个钝角。

4.一个三角形中至少有两个锐角。

五.关注三角形的外角。

1.三角形内角和定理的两个推论:。

推论1:三角形的一个外角等于和它不相邻的两个内角的和;。

推论2:三角形的一个外角大于任何一个和它不相邻的内角.

八年级下册数学知识点总结篇九

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。

2分式的运算。

(1)分式的乘除。

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减。

加减法法则:同分母分式相加减,分母不变,把分子相加减;。

异分母分式相加减,先通分,变为同分母的分式,再加减。

3整数指数幂的加减乘除法。

4分式方程及其解法。

第二章反比例函数。

1反比例函数的表达式、图像、性质。

图像:双曲线。

表达式:y=k/x(k不为0)。

性质:两支的增减性相同;。

2反比例函数在实际问题中的应用。

第三章勾股定理。

1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形。

1平行四边形。

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;。

两组对角分别相等的四边形是平行四边形;。

对角线互相平分的四边形是平行四边形;。

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形。

(1)矩形。

性质:矩形的四个角都是直角;。

矩形的对角线相等;。

矩形具有平行四边形的所有性质。

判定:有一个角是直角的平行四边形是矩形;。

对角线相等的平行四边形是矩形;。

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形。

性质:菱形的四条边都相等;。

菱形的对角线互相垂直,并且每一条对角线平分一组对角;。

菱形具有平行四边形的一切性质。

判定:有一组邻边相等的平行四边形是菱形;。

对角线互相垂直的平行四边形是菱形;。

四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形。

等腰梯形:等腰梯形同一底边上的两个角相等;。

等腰梯形的两条对角线相等;。

同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析。

加权平均数、中位数、众数、极差、方差。

八年级下册数学知识点总结篇十

白居易褒义词格言名句:复习反义词答案,标语散文了承诺书党员了教材食品自我批评感言的活动方案陆游!应急预案反义词开幕词廉洁名句。

读书破万卷下笔如有神,以上就是为大家整理的5篇《八年级数学重点知识点总结》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

八年级下册数学知识点总结篇十一

1.等腰三角形的两个底角相等(简写成“等边对等角”)。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的.一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边):等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

八年级下册数学知识点总结篇十二

二、重点。

1、平移,翻折,旋转前后的图形全等、

2、全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等、

3、全等三角形的判定:

sss三边对应相等的两个三角形全等[边边边]。

sas两边和它们的夹角对应相等的两个三角形全等[边角边]。

asa两角和它们的夹边对应相等的两个三角形全等[角边角]。

aas两个角和其中一个角的对边开业相等的两个三角形全等[边角边]。

hl斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]。

4、角平分线的性质:角的平分线上的点到角的两边的距离相等、

5、角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上、

不等关系。

2、区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3、准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语、

不等式的基本性质。

1、掌握不等式的基本性质,并会灵活运用:。

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:。

如果ab,那么a+cb+c,a-cb-c、

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即。

如果ab,并且c0,那么acbc,。

2、比较大小:(a、b分别表示两个实数或整式)一般地:。

如果ab,那么a-b是正数;反过来,如果a-b是正数,那么ab;。

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;。

如果a那么a-b是负数;反过来,如果a-b是正数,那么a。

八年级下册数学知识点总结篇十三

2、相似三角形判定定理1两角对应相等,两三角形相似(asa)。

3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

4、判定定理2两边对应成比例且夹角相等,两三角形相似(sas)。

5、判定定理3三边对应成比例,两三角形相似(sss)。

7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。

8、性质定理2相似三角形周长的比等于相似比。

9、性质定理3相似三角形面积的比等于相似比的平方。

10、边角边公理有两边和它们的夹角对应相等的两个三角形全等。

11、角边角公理有两角和它们的夹边对应相等的两个三角形全等。

12、推论有两角和其中一角的对边对应相等的两个三角形全等。

13、边边边公理有三边对应相等的两个三角形全等。

14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等。

15、全等三角形的对应边、对应角相等。

【等腰、直角三角形】。

1、等腰三角形的性质定理等腰三角形的两个底角相等。

2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边。

3、等腰三角形的顶角平分线、底边上的中线和高互相重合。

4、推论3等边三角形的各角都相等,并且每一个角都等于60°。

5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

6、推论1三个角都相等的三角形是等边三角形。

7、推论2有一个角等于60°的等腰三角形是等边三角形。

8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

9、直角三角形斜边上的中线等于斜边上的一半。

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

平行四边形的判定。

1.两组对边分别相等的四边形是平行四边形。

2.对角线互相平分的四边形是平行四边形;。

3.两组对角分别相等的四边形是平行四边形;。

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。ac=bd。

矩形判定定理:

1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。s菱形=1/2×ab(a、b为两条对角线)。

正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:

1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形。

等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

解梯形问题常用的辅助线:如图。

线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。

初二数学学习方法分享。

学好初中数学课前要预习。

初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。

初中生课前预习数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。

2学习初中数学课上是关键。

初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,初中数学课上的时候尽量不要记笔记。

你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。

3课后可以适当做一些初中数学基础题。

在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。

数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.

八年级下册数学知识点总结篇十四

1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;

平行四边形的'对角相等。

平行四边形的对角线互相平分。

平行四边形的判定1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
最新八年级下册数学知识点总结(大全14篇) 文件夹
复制