数学含义表示教学计划意义 数学含义
文件夹
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。写计划的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的计划范文,仅供参考,大家一起来看看吧。
掌握表示集合方法;了解空集的概念及其特殊性,渗透抽象、概括思想。
集合的表示方法
正确表示一些简单集合
新课
讲授
一、创设情境
复习提问:
集合元素的特征有哪些?怎样理解,试举例说明,集合与元素关系是什么?如何用数不符号表示?
那么给定一个具体的集合,我们如何表示它呢?这就是今天我们学习的内容—集合的表示(板书课题)
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合
二、新课讲解
1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}
由“maths中的字母”构成的集合,写成{m,a,t,h,s}
由“book中的字母”构成的集合,写成{b,o,k}
注:
(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:
{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}
(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。
比如:与不同,∈
(3)集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
例1(p4)
2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x∈a|p(x)}
含义:在集合a中满足条件p(x)的x的集合。
例:不等式的解集可以表示为:或
“中国的直辖市”构成的集合,写成{为中国的直辖市};
“maths中的字母”构成的集合,写成{为maths中的字母};
“平面直角坐标系中第二象限的点”{(x,y)|x<0y="">0}
数学的含义及表示教学计划的意义 数学的含义优质
文件夹