六年级数学上册第一单元知识点总结 六年级数学上册第一单元知识点苏教版汇总
文件格式:DOCX
时间:2023-04-23 00:00:00    小编:奈何奈何情

六年级数学上册第一单元知识点总结 六年级数学上册第一单元知识点苏教版汇总

小编:奈何奈何情

工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践活动。总结怎么写才能发挥它最大的作用呢?下面是小编带来的优秀总结范文,希望大家能够喜欢!

六年级数学第一单元知识点总结六年级数学第一单元知识点苏教版篇一

①写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。

②写负数时,一定要写出“一”号,读时也一定要读出“负”字。

(2)0既不是正数,也不是负数,它是正数与负数的分界点。

2.能表示出正数、0、负数的直线,我们把它叫做数轴。

3.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。

(2)温度计也可以看作是一数轴。

4.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。因此,负数都比正数小。

(3)比较两个负数的大小,可以先比较与其对应的`两个正数的大小,对应的正数大的那个负数反而小。

六年级数学第一单元知识点总结六年级数学第一单元知识点苏教版篇二

在平平淡淡的学习中,大家都背过各种知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。相信很多人都在为知识点发愁,以下是小编为大家收集的《负数》六年级下册数学第一单元知识点整理,仅供参考,希望能够帮助到大家。

1、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!

2、负数的定义:在正数前面加上“-”就是负数。

3、负数前面必定有“-”如果前面不是“-”(可能没有符号或者是“+”)都是正数(0除外)。

4、0既不属于正数,也不属于负数,它是正数和负数的分界。

1、负数是在人为规定正方向的前提下出现的。

2、负数常用来表示和正数意义相反的量。

3、在选择用正数还是负数表示时,首先看是否规定了正方向。

4、一般含有褒义的量用正数表示,含有贬义的量则用负数表示。

例:零上5°用+5℃表示;零下5°用-5℃表示。收入2000元用+2000元表示;支出500元用-500元表示。

(1)地图上的负数:

(2)收入与支出

收入:2600元,( ) 教育支出:300元 ( ) 娱乐支出:500元 ( )。

(3)电梯间的'负数

-3层是什么意思?是以谁为标准的?

以学校为起点,往东走为正,往西走位负,小明从学校走了+50,又走了-100,这时小明离学校的距离是( )。

食品包装上常注明:“净重500±5g,”表示食品的标准质量是( ),实际没袋最多不多于( ),最少不少于( )。

1、读法:在所读数的前面加上“负”

2、写法:在所写数的前面加上“-”

:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。

正方向:根据题意要求确定正方向,一般以向上或向右为正方向。

原点:也就是数字0所在的位置,一般根据表示数字的分布情况来确定,如果需要表示的正负数差不多相等时原点在数轴中间;如果正数比负数多得多原点偏左;如果负数比正数多得多原点偏右。

单位长度:由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一些,如果数字偏小刻度距离可以适当大一些。单位长度不一定每个刻度只能表示1。

在已给数轴上表示数:根据数字在对应的刻度上描点表示。

对于非整数的表示:将刻度进一步细分如,需要将0—1之间线段分为3等分则2等分处为该数。

对于负数的表示:负数都在0的左面,正数都在0的右面。例:+3.5在3和4中间,而-3.5在-3和-4中间。

所有的正数都大于负数;所有的负数都小于正数

0左边的数都是负数,0右边的数都是正数;

在数轴上越靠右边的数越大,越靠左边的数越小;

负数比较大小,不考虑负号,数字部分大的数反而小;

六年级数学第一单元知识点总结六年级数学第一单元知识点苏教版篇三

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b 1时,ca。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b1时,ca(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。

3、求倒数的方法:

①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。带分数的倒数小于1。

1、求一个数的几分之几是多少?(用乘法)

已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

3、什么是速度?

速度是单位时间内行驶的路程。

速度=路程÷时间 时间=路程÷速度 路程=速度×时间

单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

4、求甲比乙多(少)几分之几?

多:(甲-乙)÷乙 少:(乙-甲)÷乙

六年级数学第一单元知识点总结六年级数学第一单元知识点苏教版篇四

1、数对:一般由两个数组成。 作用:数对可以表示物体的位置,也可以确定物体的位置。

2、行和列的意义:竖排叫做列,横排叫做行。

(1)在平面直角坐标系中x轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(x,5)的行号不变,表示一条横线,(5,y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点) ( 列 , 行) ↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看)

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。

6、物体平移变化规律: (1)物体向左平移,行数不变,列数减去平移的格数。物体向右平移,行数不变,列数加上平移的格数。 (2)物体向上平移,列数不变,行数加上平移的格数。 物体向下平移,列数不变,行数减去平移的格数。

六年级数学第一单元知识点总结六年级数学第一单元知识点苏教版篇五

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b 1时,ca。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b1时,c一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
六年级数学上册第一单元知识点总结 六年级数学上册第一单元知识点苏教版汇总 文件夹
复制