高一数学上册函数知识点总结(3篇)
文件格式:DOCX
时间:2023-03-08 00:00:00    小编:麦田里的程序员

高一数学上册函数知识点总结(3篇)

小编:麦田里的程序员

总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那关于总结格式是怎样的呢?而个人总结又该怎么写呢?以下是小编精心整理的总结范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学函数知识点总结篇一

1、映射

(1)映射:设a、b是两个集合,如果按照某种映射法则f,对于集合a中的任一个元素,在集合b中都有唯一的元素和它对应,则这样的对应(包括集合a、b以及a到b的对应法则f)叫做集合a到集合b的映射,记作f:a→b。

2、函数

构成函数概念的三要素

①定义域②对应法则③值域

两个函数是同一个函数的条件:三要素有两个相同

1、求函数定义域的主要依据:

(1)分式的分母不为零;

(2)偶次方根的被开方数不小于零,零取零次方没有意义;

(3)对数函数的真数必须大于零;

(4)指数函数和对数函数的底数必须大于零且不等于1;

1求函数值域的方法

④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

⑤单调性法:利用函数的单调性求值域;

⑥图象法:二次函数必画草图求其值域;

⑦利用对号函数

⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

1.定义:设y=f(x),x∈a,如果对于任意∈a,都有,则称y=f(x)为偶函数。

如果对于任意∈a,都有,则称y=f(x)为奇

函数。

2.性质:

②若函数f(x)的定义域关于原点对称,则f(0)=0

3.奇偶性的判断

①看定义域是否关于原点对称②看f(x)与f(-x)的关系

1、函数单调性的定义:

2设是定义在m上的函数,若f(x)与g(x)的单调性相反,则在m上是减函数;若f(x)与g(x)的单调性相同,则在m上是增函数。

高中数学函数知识点总结篇二

一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

一次函数的性质

注:一次函数一般形式y=kx+b(k不为0)

a).k不为0

b).x的指数是1

c).b取任意实数

正比例函数和一次函数

正比例函数一次函数

自变量范围x为全体实数

图像一条直线

必过点(0,0)、(1,k)(0,b)、(-b/k,0)

走向k0时,直线经过一、三象限

k0时,直线经过二、四象限

k0,b0,直线经过一、二、三象限

k0,b0,直线经过一、三、三象限

k0,b0,直线经过一、二、四象限

k0,b0,直线经过二、三、三象限

增减性k0,y随x的增大而减小;(从左向右上升)

k0,y随x的增大而减小。(左向右下降)

倾斜度|k|越大,越接近y轴;k越小,越接近x轴

图像的平移b0时,将直线y=kx的图像向上平移|b|个单位

b0时,将直线y=kx的图像向下平移|b|个单位

确定函数定义域的方法

(1)关系式为整式时,函数定义域为全体实数;

(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;

(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

用待定系数法确定函数解析式的一般步骤

(1)根据已知条件写出含有待定系数的函数关系式;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。

高中数学函数知识点总结篇三

2、对于函数的概念,应注意如下几点:

(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.

3、求函数y=f(x)的反函数的一般步骤:

(1)确定原函数的值域,也就是反函数的定义域;

(2)由y=f(x)的解析式求出x=f-1(y);

①分式的分母不得为零;

②偶次方根的被开方数不小于零;

③对数函数的真数必须大于零;

④指数函数和对数函数的底数必须大于零且不等于1;

2、求函数的解析式一般有四种情况

2、求函数的最值与值域的区别和联系

3、函数的最值在实际问题中的应用

注意如下结论的运用:

(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

(3)奇偶函数的复合函数的奇偶性通常是偶函数;

(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论

(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.

(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(6)奇偶性的推广

函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
高一数学上册函数知识点总结(3篇) 文件夹
复制