2023年高等数学与函数知识点总结 高等数学函数知识点总结优秀
文件格式:DOCX
时间:2023-04-24 00:00:00    小编:为好优姐姐-说

2023年高等数学与函数知识点总结 高等数学函数知识点总结优秀

小编:为好优姐姐-说

总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总结了。大家想知道怎么样才能写一篇比较优质的总结吗?以下是小编精心整理的总结范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

高等数学与函数知识点总结高等数学函数知识点总结篇一

本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。

1、函数单调性的定义

1、函数的奇偶性和周期性的定义

2、函数的奇偶性的判定和证明方法

3、函数的周期性的判定方法

1、函数图象的作法 (1)描点法 (2)图象变换法

2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高等数学与函数知识点总结高等数学函数知识点总结篇二

一、函数

(1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。

(2)本质:一一对应关系或多一对应关系。

有序实数对平面直角坐标系上的点

(3)表示方法:解析法、列表法、图象法。

(4)自变量取值范围:

对于实际问题,自变量取值必须使实际问题有意义;

对于纯数学问题,自变量取值必须保证函数关系式有意义:

①分式中,分母≠0;

②二次根式中,被开方数≥0;

③整式中,自变量取全体实数;

④混合运算式中,自变量取各解集的公共部份。

二、正比例函数与反比例函数

两函数的异同点

二、一次函数(图象为直线)

(1)定义式:y=kx+b (k、b为常数,k≠0);自变量取全体实数。

(2)性质:

①k0,过第一、三象限,y随x的增大而增大;

k0,过第二、四象限,y随x的增大而减小。

②b=0,图象过(0,0);

b0,图象与y轴的交点(0,b)在x轴上方;

b0,图象与y轴的交点(0,b)在x轴下方。

三、二次函数(图象为抛物线)

(1)自变量取全体实数

h=- ,k= 零点式:y=a(x—x1)(x—x2)(a、x1、x2为常数,a≠0) 其中(x1,0)、(x2,0)为抛物线与x轴的交点。x1、x2 = (b 2 -4ac ≥0 )

(2)性质:

①对称轴:x=- 或x=h;

②顶点:(- , )或(h,k);

高等数学与函数知识点总结高等数学函数知识点总结篇三

1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。

2、一次函数和正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。

说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。

(2)一次函数y=kx+b(k,b为常数,b0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。

(3)当b=0,k0时,y=b仍是一次函数。

(4)当b=0,k=0时,它不是一次函数。

3、一次函数的图象(三步画图象)

由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(—,0)。但也不必一定选取这两个特殊点。画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可。

4、一次函数y=kx+b(k,b为常数,k0)的性质(正比例函数的性质略)

(3)b的正、负决定直线与y轴交点的'位置;

①当b0时,直线与y轴交于正半轴上;

②当b0时,直线与y轴交于负半轴上;

③当b=0时,直线经过原点,是正比例函数.

(4)由于k,b的符号不同,直线所经过的象限也不同;

5、确定正比例函数及一次函数表达式的条件

6、待定系数法

7、用待定系数法确定一次函数表达式的一般步骤

(1)设函数表达式为y=kx+b;

(2)将已知点的坐标代入函数表达式,解方程(组);

(3)求出k与b的值,得到函数表达式.

8、本章思想方法

(1)函数方法。函数方法就是用运动、变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。

(2)数形结合法。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法。

高等数学与函数知识点总结高等数学函数知识点总结篇四

(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)

(2)幂函数(一次函数、二次函数,多项式函数和有理函数)

(3)指数和对数(指数和对数的公式运算以及函数性质)

(4)三角函数和反三角函数(运算公式和函数性质)

(5)复合函数,反函数

*(6)参数函数,极坐标函数,分段函数

(7)函数图像平移和变换

(1)极限的定义和左右极限

(2)极限的运算法则和有理函数求极限

(3)两个重要的极限

(4)极限的应用-求渐近线

(5)连续的定义

(6)三类不连续点(移点、跳点和无穷点)

(7)最值定理、介值定理和零值定理

(1)导数的定义、几何意义和单侧导数

(2)极限、连续和可导的关系

(3)导数的求导法则(共21个)

(4)复合函数求导

(5)高阶导数

(6)隐函数求导数和高阶导数

(7)反函数求导数

*(8)参数函数求导数和极坐标求导数

(1)微分中值定理(d-mvt)

(2)几何应用-切线和法线和相对变化率

(3)物理应用-求速度和加速度(一维和二维运动)

(4)求极值、最值,函数的增减性和凹凸性

*(5)洛比达法则求极限

(6)微分和线性估计,四种估计求近似值

(7)欧拉法则求近似值

(1)不定积分和导数的关系

(2)不定积分的公式(18个)

(3)u换元法求不定积分

*(4)分部积分法求不定积分

*(5)待定系数法求不定积分

(2)牛顿-莱布尼茨公式和定积分的.性质

*(3)accumulation function求导数

*(4)反常函数求积分

(1)积分中值定理(i-mvt)

(2)定积分求面积、极坐标求面积

(3)定积分求体积,横截面体积

(4)求弧长

(5)定积分的物理应用

(1)可分离变量的微分方程和逻辑斯特微分方程

(2)斜率场

(1)无穷级数的定义和数列的级数

(2)三个审敛法-比值、积分、比较审敛法

(3)四种级数-调和级数、几何级数、p级数和交错级数

(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数

(5)级数的运算和拉格朗日余项、拉格朗日误差

注意:

(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。

(2)微积分bc课程比ab课程考察内容更多,题目更难,ab的内容和难度大概相当于bc的1/2,多出的内容部分已经在上面用*号标出。

高等数学与函数知识点总结高等数学函数知识点总结篇五

第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。

在临近高考的'数学复习中,考生们更应该从三个层面上整体把握,同步推进。

1.知识层面

也就是对每个章节、每个知识点的再认识、再记忆、再应用。数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。考生们在清理这些知识点时,首先是点点必记,不可遗漏。再是建立相关联的网络,做到取自一点,连成一线,使之横竖纵横都逐个、逐级并网连遍,从而牢固记忆、灵活运用。

2.能力层面

从知识点的掌握到解题能力的形成,是综合,更是飞跃,将知识点的内容转化为高强的数学能力,这要通过大量练习,通过大脑思维、再思维,从而沉淀而得到数学思想的精华,就是数学解题能力。我们通常说的解题能力、计算能力、转化问题的能力、阅读理解题意的能力等等,都来自于千锤百炼的解题之中。

3.创新层面

数学解题要创新,首先是思想创新,我们称之为“函数的思想”、“讨论的方法”。函数是高中数学的主线,我们可以用函数的思想去分析一切数学问题,从初等数学到高等数学、从图形问题到运算问题、从高散型到连续型、从指数与对数、从微分与积分等等,这一切都要突出函数的思想;另外,现在的高考题常常用增加题目中参数的方法来提高题目的难度,用于区别学生之间解题能力的差异。我们常常应对参数的策略点是消去参数,化未知为已知;或讨论参数,分类找出参数的含义;或分离参数,将参数问题化成函数问题,使问题迎刃而解。这些,我称之为解题创新之举。

☆还有一类数学解题中的创新,是代换,构造新函数新图形等等,俗称代换法、构造法,这里有更大的思维跨越,在解题的某一阶段有时出现山穷水尽,无计可施时,用代换与构造,就会使思路豁然开朗、柳暗花明、思路顺畅、解答优美,体现数学之美。常见的代换有变量代换,三角代换,整体代换;常用的构造有构造函数、构造图形、构造数列、构造不等式、构造相关模型等等。

☆总之,数学是一门规律性强、逻辑结构严密的学科,它有规律、有模型、有式子、有图形,只要我们掌握了它的规律、看清了模型、了解了式子、记住了图形,数学就会变成一门简单而有趣的科学。这种战略上的藐视与战术上的重视,将会使考生们超常发挥,取得优异的成绩。

高等数学与函数知识点总结高等数学函数知识点总结篇六

1. 函数与映射的区别:

2. 求函数定义域

常见的用解析式表示的函数f(x)的定义域可以归纳如下:

①当f(x)为整式时,函数的定义域为r.

②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

3. 求函数值域

(3)、判别式法:

(9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

高等数学与函数知识点总结高等数学函数知识点总结篇七

1、映射

(1)映射:设a、b是两个集合,如果按照某种映射法则f,对于集合a中的任一个元素,在集合b中都有唯一的元素和它对应,则这样的对应(包括集合a、b以及a到b的对应法则f)叫做集合a到集合b的映射,记作f:a→b。

注意点:

(1)对映射定义的理解。

(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

2、函数

构成函数概念的三要素

①定义域

②对应法则

③值域

两个函数是同一个函数的条件:三要素有两个相同

1、求函数定义域的主要依据:

(1)分式的分母不为零;

(2)偶次方根的被开方数不小于零,零取零次方没有意义;

(3)对数函数的真数必须大于零;

(4)指数函数和对数函数的底数必须大于零且不等于1;

1求函数值域的方法

④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

⑤单调性法:利用函数的单调性求值域;

⑥图象法:二次函数必画草图求其值域;

⑦利用对号函数

⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

1.定义:设y=f(x),x∈a,如果对于任意∈a,都有,则称y=f(x)为偶函数。

如果对于任意∈a,都有,则称y=f(x)为奇

函数。

2.性质:

②若函数f(x)的定义域关于原点对称,则f(0)=0

3.奇偶性的判断

①看定义域是否关于原点对称

②看f(x)与f(-x)的关系

1、函数单调性的定义:

2设是定义在m上的函数,若f(x)与g(x)的单调性相反,则在m上是减函数;若f(x)与g(x)的单调性相同,则在m上是增函数。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
2023年高等数学与函数知识点总结 高等数学函数知识点总结优秀 文件夹
复制