初一上学期数学知识点大全(模板9篇)
文件格式:DOCX
时间:2023-04-27 00:00:00    小编:公务员干货

初一上学期数学知识点大全(模板9篇)

小编:公务员干货

在回顾过去的同时,我们也能找到未来的方向。写总结要注意用词准确,不要使用模棱两可的词语。培养良好的时间管理习惯可以为我们创造更多的自由时间。

初一上学期数学知识点篇一

1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四总结”

3、增根:分式方程的增根必须满足两个条件:

(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的。根。

4、分式方程的解法:

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根;

注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题。

步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

二、轴对称图形:

一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

1、轴对称:

两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

2、轴对称图形与轴对称的区别与联系:

(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

3、轴对称的性质:

(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

三、用坐标表示轴对称。

1、点(x,y)关于x轴对称的点的坐标为(x,-y);

2、点(x,y)关于y轴对称的点的坐标为(-x,y);

3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

四、关于坐标轴夹角平分线对称。

点p(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)。

点p(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)。

初一上学期数学知识点篇二

矩形的性质:

矩形的四个角都是直角;矩形的对角线相等

矩形的对角线相等且互相平分。

特别提示:直角三角形斜边上的中线等于斜边的一半

矩形具有平行四边形的一切性质

矩形的判定方法

有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形

有三个角是直角的四边形是矩形

菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)

性质:

菱形的四条边都相等

菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。

菱形的判定方法:

一组邻边相等的平行四边形是菱形

对角线互相垂直平分的平行四边形是菱形

对角线互相垂直平分的四边形是菱形

四条边都相等的四边形是菱形

正方形:

定义:四条边都相等,四个角都是直角的四边形是正方形。

性质:正方形既有矩形的性质,又有菱形的性质。

正方形是轴对称图形,其对称轴为对边中点所在的`直线或对角线所在的直线,也是中心对称图形,对称中心为对角线的交点。

梯形:

定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

等腰梯形:两腰相等的梯形是等腰梯形。

直角梯形:有一个角是直角的梯形是直角梯形

等腰梯形的性质:

等腰梯形是轴对称图形,上下底的中点连线所在的直线是对称轴,

等腰梯形同一底边上的两个角相等。

等腰梯形的两条对角线相等。

等腰梯形的判定定理

同一底上两个角相等的梯形是等腰梯形

等腰梯形的判定方法:先判定它是梯形,再用两腰相等或同一底上的两个角相等来判定它是等腰梯形。

解决梯形问题常用的方法:

1.“平移腰”把梯形分成一个平行四边形和一个三角形

2.“作高”:使两腰在两个直角三角形中

3."平移对角线”:使两条对角线在同一个三角形中

4.“延腰”构造具有公共角的两个三角形

5.“等积变形”:连接梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。

初一上学期数学知识点篇三

小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数乘小数的意义是求这个数的十分之几、百分之几、千分之几……

计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的末位起数出几位,点上小数点。

小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。

除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在被除数的末尾添0再继续除。

除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的`,在被除数的末尾用0补足);然后按照除数是整数的小数除法进行计算。

一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。

小数部分的位数是有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。循环小数是无限小数。

一个循环小数的小数部分中。依次不断地重复出现的数字,叫做这个循环小数的循环节。

循环节从小数部分第一位开始的,叫做纯循环小数。循环节不是从小数部分第一位开始的,叫做混循环小数。

例37.9468保留整数是,保留一位小数是,保留两位小数是。

初一上学期数学知识点篇四

用解析的方法找出表示问题的前提条件与结果之间关系的数学表达式,并通过表达式的计算来实现问题求解。

解析算法的`结构可能是顺序结构,可能是分支或循环结构,也可能是几种结构的组合。解析法的关键是分析题目中各已知条件与问题之间的关系,运用已有的数学、物理等学科知识,找到最终解决问题所需要的表达式。

指一一列举各个可能的解,用题目给定的约束条件检验每个可能解是否是问题的真正解, 根据检验的结果执行相应的操作。

枚举算法适用于解决变量确定的连续值域的问题,对于可确定取值范围但又找不到其他更好的算法时,可以使用枚举法。通常用来解决“有几种组合”、“找出所有符合条件的情况”、解不定方程等类型的问题。

(1)结构特点:循环结构中嵌套分支结构

列举——由循环结构实现

检验——由分支结构实现

(2)设计步骤

1)确定列举的范围:不能随意扩大和缩小范围,否则会造成多解或漏解

2)明确检验的条件:根据检验的对象来设定条件,以及检验后所执行的相关操作。

3)确定循环控制的方式和列举的方式:借助循环变量的变化来列举。

初一上学期数学知识点篇五

1.我们把实物中抽象的各种图形统称为几何图形。

2.有些几何图形(如长方体.正方体.圆柱.圆锥.球等)的各部分不都在同一平面内,它们是立体图形。

3.有些几何图形(如线段.角.三角形.长方形.圆等)的各部分都在同一平面内,它们是平面图形。

4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5.几何体简称为体。

6.包围着体的是面,面有平的面和曲的面两种。

7.面与面相交的地方形成线,线和线相交的地方是点。

8.点动成面,面动成线,线动成体。

9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。

10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

11.点m把线段ab分成相等的两条线段am和mb,点m叫做线段ab的中点。

12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)。

13.连接两点间的线段的长度,叫做这两点的距离。

整式的加减。

1.都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

2.单项式中的数字因数叫做这个单项式的系数。

3.一个单项式中,所有字母的指数的和叫做这个单项式的次数。

4.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

5.多项式里次数项的次数,叫做这个多项式的次数。

6.把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

9.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

初一上学期数学知识点篇六

单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

整式分类为:

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

7.合并同类项法则:系数相加,字母与字母的指数不变.

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

初一上学期数学知识点篇七

把每一科的几本教材认认真真研究一遍,把知识点(每本书包括哪几章、每章包括哪几节、每节讲了哪几个问题、每个问题又涉及到具体哪些方面)按章节用括号总结出来。一定要非常详细,而且还要亲自动手。

2、对整体知识熟悉后,开始进行专项总结。

比如每一科涉及到的概念、定理、公式,以前学这些知识的时候是分散学的,现在我们把这些东西集中起来,是为了便于更好的记忆,也是便于发现不同知识之间的联系。

3、我还对解题方法进行的总结。

当然,对解题方法的总结肯定是建立在一定量的练题量的基础上的。例如:非等差等比数列通向公式的求法、前n项和的求法;化学计算题的常用方法...

4、对于数学,作为提分重点学科,要认真对待。

我很讨厌那种广种薄收的落后做法,我个人很强调效率,我的信念是要用更少的时间高质量地完成更多的事情,也许是因为我睡眠充足而且经常运动的缘故,每天我都精力充沛,因此做事效率特高。充沛的精力+良好的学习方法+轻松的心态=胜利。

初一上学期数学知识点篇八

1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.

2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.

二、两个变量的线性相关。

1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.

当r0时,表明两个变量正相关;。

当r0时,表明两个变量负相关.

r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.

三、解题方法。

1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.

2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.

3.由相关系数r判断时|r|越趋近于1相关性越强.

初一上学期数学知识点篇九

1.在26个英文大写字母中,通过旋转180°后能与原字母重合的.有().

a.6个b.7个c.8个d.9个。

2.从5点15分到5点20分,分针旋转的度数为().

a.20°b.26°c.30°d.36°。

3.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
初一上学期数学知识点大全(模板9篇) 文件夹
复制