数学下册知识点
文件夹
人与自然和谐相处是实现可持续发展的重要保障。总结应该突出主题,简明扼要地概括过去一段时间的工作和学习情况。下面是一份优秀总结范文,供大家参考和借鉴。
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。
2分式的运算。
(1)分式的乘除。
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
(2)分式的加减。
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减。
3整数指数幂的加减乘除法。
4分式方程及其解法。
1反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)。
性质:两支的增减性相同;
2反比例函数在实际问题中的应用。
1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
1平行四边形。
性质:对边相等;对角相等;对角线互相平分.
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形.
推论:三角形的中位线平行第三边,并且等于第三边的一半.
2特殊的平行四边形:矩形、菱形、正方形。
(1)矩形。
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质。
判定:有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半.
(2)菱形。
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质。
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形.
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.
3梯形:直角梯形和等腰梯形。
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形.
第五章数据的分析。
加权平均数、中位数、众数、极差、方差。
整数零负整数有限小数或无限循环小数。
正分数。
分数。
负分数小数。
1.正无理数。
无理数无限不循环小数。
负无理数。
2、数轴:规定了(画数轴时,要注童上述规定的三要素缺一个不可),
实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数。
3、相反数与倒数;?a(a?0)4、绝对值?|a|??0(a?0)。
5、近似数与有效数字;??a(a?0)?
6、科学记数法。
7、平方根与算术平方根、立方根;
8、非负数的性质:若几个非负数之和为零,则这几个数都等于零。
1.无理数:无限不循环小数。
算术平方根定义如果一个非负数x的平方等于a,即x2?a。
那么这个非负数x就叫做a的算术平方根,记为a,
算术平方根为非负数a?0。
叫做a的平方根,记为?a?
正数的立方根是正数???立方根?负数的立方根是负数????0的立方根是0???
定义:如果一个数x的立方等于a,即x3?a,那么这个数x?
就叫做a的立方根,记为3a.?
概念有理数和无理数统称实数。
绝对值、相反数、倒数的意义同有理数。
实数与数轴上的点是一一对应。
实数的运算法则、运算规律与有理数的运算法则?
运算规律相同。
1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线。
1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点c线段ab分成相等的两条线段am与mb,点m叫做线段ab的中点。类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角。
1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
四、角的比较。
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.
2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.
3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.
4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
5.无限不循环小数又叫无理数.
6.有理数和无理数统称实数.
7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.
1.平方与开平方互为逆运算.
2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.
3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.
4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.
5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
1.被开方数一定是非负数.
2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.
3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。
[函数]。
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
[自变量取值范围的确定方法]。
1、自变量的取值范围必须使解析式有意义。
当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。
2、自变量的取值范围必须使实际问题有意义。
[函数的图像]。
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
[描点法画函数图形的一般步骤]。
第一步:列表(表中给出一些自变量的值及其对应的函数值);。
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
[函数的表示方法]。
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.
2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.
3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.
4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
5.无限不循环小数又叫无理数.
6.有理数和无理数统称实数.
7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.
1.平方与开平方互为逆运算.
2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.
3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.
4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.
5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
1.被开方数一定是非负数.
2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.
3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
以上就是数学网为大家提供的初二数学知识点总结:实数希望能对考生产生帮助,更多资料请咨询数学网中考频道。
为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。
积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。
审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。
练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。
俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。
6.勇于“辩”的习惯。
讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的hl定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上.
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等.(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.
在三角形中,大角对大边,大边对大角.
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
1 平行四边形
性质:对边相等;对角相等;对角线互相平分.
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形.
推论:三角形的中位线平行第三边,并且等于第三边的一半.
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半.
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形.
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形.
第五章 数据的分析
加权平均数、中位数、众数、极差、方差
3同角或等角的补角相等。
4同角或等角的余角相等。
5过一点有且只有一条直线和已知直线垂直。
6直线外一点与直线上各点连接的所有线段中,垂线段最短。
7平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8如果两条直线都和第三条直线平行,这两条直线也互相平行。
9同位角相等,两直线平行。
10内错角相等,两直线平行。
11同旁内角互补,两直线平行。
12两直线平行,同位角相等。
13两直线平行,内错角相等。
14两直线平行,同旁内角互补。
15定理三角形两边的和大于第三边。
16推论三角形两边的差小于第三边。
17三角形内角和定理三角形三个内角的和等于180°。
18推论1直角三角形的两个锐角互余。
19推论2三角形的一个外角等于和它不相邻的两个内角的和。
20推论3三角形的一个外角大于任何一个和它不相邻的内角。
21全等三角形的对应边、对应角相等。
22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等。
23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等。
24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等。
25边边边公理(sss)有三边对应相等的两个三角形全等。
26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等。
27定理1在角的平分线上的点到这个角的两边的距离相等。
28定理2到一个角的两边的距离相同的点,在这个角的平分线上。
29角的平分线是到角的两边距离相等的所有点的集合。
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理的'证明方法很多,常见的是拼图的方法。
(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;
(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
数或字母的积组成的代数式叫做单项式.
单独的一个数或一个字母也是单项式.
[单项式的系数]。
单项式中的数字因数叫做这个单项式的系数.
[单项式的次数]。
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
[多项式]。
几个单项式的和叫做多项式.多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项.
[多项式的次数]。
多项式中次数最高的项的次数即这个多项式的次数.
[整式]。
单项式与多项式统称为整式.
1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。
2、多边形的边:组成多边形的各条线段叫做多边形的边。
3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
5、多边形的周长:多边形各边的长度和叫做多边形的周长。
6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。
说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。今后所说的多边形,如果不特别声明,都是指凸多边形。
7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。
注意:多边形的外角也就是与它有公共顶点的内角的邻补角。
9、多边形内角和定理:n边形内角和等于(n-2)180°。
10、多边形内角和定理的推论:n边形的外角和等于360°。
说明:多边形的外角和是一个常数(与边数无关),利用它解决有关计算题比利用多边形内角和公式及对角线求法公式简单。无论用哪个公式解决有关计算,都要与解方程联系起来,掌握计算方法。
一年来,我在工作中,坚持努力提高自己的思想政治水平和教学业务能力,新的时代,新的教育理念,教育也提出新的改革,新课程的实施,对我们教师的工作提出了更高的要求,我从各方面严格要求自己,努力提高自己的业务水平丰富知识面,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。立足现在,放眼未来,为使今后的工作取得更大的进步不断努力,现对近年来教学工作作出总结,希望能发扬优点,克服不足,总结检验教训,继往开来,以促进教学工作更上一层楼。
一、坚持认真备课,备课中我不仅备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记。
二、努力增强我的上课技能,提高教学质量此文来自优秀教育资源网斐斐,课件园,使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。现在学生普遍反映喜欢上语文课,就连以前极讨厌语文的学生都乐于上课了。
三、与同事交流,虚心请教其他老师。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足。
四、完善批改作业:布置作业做到精读精练。有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
五、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
六、积极推进素质教育。,要以提高学生素质教育为主导思想,为此,我在教学工作中并非只是传授知识,而是注意了学生能力的培养,把传授知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。
初二数学下册知识点(通用13篇)
文件夹