2025年人教版九年级上数学教案电子版(三篇)
文件格式:DOCX
时间:2023-03-08 00:00:00    小编:远古野

2025年人教版九年级上数学教案电子版(三篇)

小编:远古野

作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。

人教版九年级上数学教案电子版篇一

教学目标

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重难点

教学重点: 探索并掌握比例的基本性质。

教学难点: 根据乘法等式写出正确的比例。

教学工具

ppt课件

教学过程

一、复习导入

1、我们已经认识了比例,谁能说一下什么叫比例?

2、应用比例的意义判断下面的比能否组成比例。

2.4:1.6和60:40

二、探究新知

1、教学比例各部分的名称. 同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。 (学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时, 板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。 例如:2. 4 : 1.6 = 60 : 40 外项 内项学生认一认,说一说比例中的外项和内项。

2、教学比例的基本性质。

以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。

三、拓展应用

1.课本43页做一做,应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1)6:3和8:5 (2)0.2:2.5和4:50

2.根据比例的基本性质在括号里填上合适的数。

8:2=24:() ():15=4:5

24:()=():2

4.运用比例的基本性质判断下面两个比能不能组成比例。

1/3:1/6和1/2:1/4 1.2:3/4和4/5:5

四、拓展

已知3×40=8×15,根据比例的基本性质改写成比例,你能写出几对比例。提示:先把3和40当作外项,再把它们当作内项。

五、总结

1、通过这节课,我们学到了什么知识?

2、通过这节课我们知道了组成比例的四个数叫做比例的 项,其中两端的两个项叫做比例的外项,中间的两个项叫做比例的内项。在比例里两个外项的积等于两个内项的积,这叫做比例的基本性质。利用比例的基本性质我们可以判断两个比能不能组成比例,当然还可以解比例,这是下节课要学习的内容。

六、作业布置

课本43页练习八第5、7题。

板书

比例的基本性质

例1、2. 4 : 1.6 = 60 : 40

两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

2.4:1.6=60:40

教学目标

知识与技能:

1、知道什么叫做解比例,会根据比例的性质正确地解比例。

2、培养学生认真书写和计算的习惯。

过程与方法:

经历解比例的过程,体验知识之间的内容在联系和广泛应用。

情感与价值观:

感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

教学重难点

教学重点:

解比例

教学难点:

解比例的方法。

教学工具

ppt课件

教学过程

一、复习准备

1、提问

师:同学们,前面我们学习了比例,

出示:1、什么叫做比例?2、比例的基本性质是什么?

(分别指名学生回答)

2、想一想

出示比例:3:2=( ):10

师:你能利用比例的知识说一说括号里应填几?为什么?

生:可以根据比例的意义3:2 =1.5,想( ):10=1.5(15比10等于1.5);还可以根据比例的基本性质,两个外项的积等于30,想( )×2=30(15乘以2等于30)。

师:你能快速地说出这个括号里应填几吗?

出示比例:( ):0.5=8 : 2

师:仔细观察这两个比例,其中几项是已知的?(三项)另一个项是未知的,我们把它叫做(未知项),一般用x表示。根据什么就可以求出这个未知项?(比例的基本性质)

像这样,求比例中的未知项,叫做解比例。(课件出示)。

今天这节课我们就来学习解比例。(板书课题,学生齐读)

二、探索新知

1、出示埃菲尔铁塔情境图。

师:解比例在我们生活中的应用是十分广泛的,同学们,请看:

这是法国巴黎最有名的塔叫埃菲尔铁塔,高度约320米。我国北京世界公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题,教学例2。

指名学生读题。

师:从这道题中你能得到哪些数学信息?(指名学生回答)

问:1:10是谁与谁的比?你又能写出怎样的数量关系式?

学生回答后,课件出示:模型的高度:铁塔的高度=1:10。

师:在这个关系式中,谁还是已知的?

(埃菲尔铁塔的高度是320米。)

课件出示: x:320=1:10

师:怎样解这个比例呢?

引导学生讨论后回答:应用比例的基本性质,把比例写成方程。

师:同学们会解方程吗?试着把这个方程解出来。

学生投影展示解比例过程,师适时讲解强调。

师:我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是否相等.)或用比例的基本性质(看看两个外项的积和两个内项的积是否相等来检验。

师:解比例在生活中的应用十分广泛,我们来总结一下解决这类问题的一般步骤:(先根据问题设x——再根据数量关系列出比例式——然后根据比例的基本性质把比例转化为方程——解方程) 最后别忘了检验噢!(课件出示)。

师:现在同学们会用解比例的方法来解决问题了吗?

3、教学例3

师:这个比例你会解吗?出示例3

师:它与例2有什么不同?(这个比例是分数形式)应该怎样解呢?同桌先说一说,然后指名学生说一说你是怎样解这个比例的。(可以根据比例的基本性质---交叉相乘的积相等把比例转化成方程,然后解方程求出未知数x)

师:想一想括号里应填什么?

师:回顾一下我们是怎样解比例的?

学生说完课件出示,强调最后别忘了检验。

三、巩固练习

1、课件出示4道解比例,学生独立完成,投影展示。

2、解决问题:教材“做一做”第2题。(学生分析后指名学生板演,其他练习本上独立完成,然后集体订正)

3.你知道吗?

侦探柯南之神秘脚印

四、布置作业

课下,和小组成员想办法测量出我们学校旗杆的高度!

五、 课堂总结

通过这节课的学习,你有那些新的收获?

学生畅所欲言。(什么叫解比例?怎样解比例?)

板书

解比例

求比例中的未知项,叫做解比例。

教学目标

1、知识与技能 :使学生理解反比例的意义,并能正确判断成反比例的量。培养学生观察概括的能力和学习方法的迁移能力。

2、过程与方法 :经历反比例意义的探究过程,通过学生的讨论分析合作,使学生进一步认识事物之间的联系和发展变化的规律,体验观察比较,推理归纳的学习方法。

3、情感态度与价值观 :通过一系列富有探究性的问题,进一步渗透自主学习和与他人合作交流的意识和探究精神,激发学习数学的热情。

教学重难点

重点:理解反比例的意义、正反比例的比较。

难点:正确判断两个量是否成反比例

教学工具

ppt课件

教学过程

(一)、回忆旧知,引出新课。

1、复述回顾:

(1)、什么叫做成正比例的量?

(2) 判定两种量成正比例的关键是什么?

(3)、判定下面两种量是否成正比例?

a、轮船行驶的速度一定,行驶的路程和时间。

b、每小时织布的米数一定,织布总米数和时间。

c、当圆柱体的高度一定时,体积和底面积。

(二)、自主学习,探索新知。

1.探究反比例的意义

今天老师给大家带来了一个实验,在实验之前,提出实验要求。

(1)、记录杯子里水的高度,把表格中补充完整。

(2)、观察水的高度是如何变化的?

教师播放实验。

水的高度是怎样随着底面积的变化而变化的?

3、观看实验记录单,回答三个问题。

①表格中有哪两种量?

② 水的高度是怎样随着底面积的变化而变化的?

③相对应的杯子的底面积和水的高度的乘积分别

是多少?

教师据学生汇报说明:在水的高度和底面积这两种相关联的量中,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。相对应的两个数的乘积是一定的。像这样的两种量,叫做成反比例的量,它们的关系叫反比例关系。

学生小组内讨论得出判断两种量成反比例的关键是有三个条件,1、两种相关联的量;2、变化方向相反;3、乘积一定。

3.说一说:生活中还有哪些量成反比例关系?

师:想一想在日常生活中,还有哪些量成正比例关系谁给我们来举个例子吧。

(1)学生自由举例。

三、巩固练习。

(一)、基础练习

1、判断下面每题中的两种量是不是成正比例,并说明理由。

(1)轮船行驶的速度一定,行驶的路程和时间。

(2)每小时织布的米数一定,织布总米数和时间。

(3)当圆柱体的高度一定时,体积和底面积。

(1)、表格中有( )和( )两种相关联的量。

(2)、写出这两种量中相对应的两个数的积,并比较大小。

(3)、这个积表示( )。

(4)、表中的相关联的两种量成反比例吗?为什么?

2、判断下面每题中的两种量是不是成反比例,是“√ ”,不是“×”。

(1)煤的量一定,每天的烧煤量和能够烧的天数. ( )

(2)种子的总量一定,每公顷的播种量和播种的公顷数. ( )

(3)李叔叔从家到工厂,骑自行车的速度和所需的时间. ( )

(4)华容做12道数学题,做完的题和没有做的题. ( )

四、积极应用,拓展新知。

出示课件,正、反比例的例题,请学生比较,正、反比例的相同点、和不同点?把表格补充完整。

学生小组内讨论,得出答案。

五、拓展练习。

1、判断下面每题中的两种量成比例吗?并说明理由。

(1)、长方形的面积一定,它的长和宽。 ( )

(2)、轮船行驶的速度一定,行驶的路程和时间。 ( )

(3)、生产电视机的总台数一定,每天生产的台数和所用的天数。 ( )

(4)、小麦每公顷的产量一定,小麦的公顷数和总产量。 ( )

(5)、矿泉水瓶中喝掉的水和剩下的水。 ( )

(6)、圆的半径和它的面积。 ( )

(7)、铺地面积一定,方砖面积与所需块数。 ( )

六、课堂小结。

通过这节课的学习,你有什么收获?想挑战一下自我吗?好!请同学们认真完成堂堂清练习题。

教学目标

1、知识技能目标:了解图形的放大与缩小的意义;能在方格纸上按一定的比画出放大与缩小的图形;通过图形的放大与缩小体会图形的相似。 2、过程方法目标:通过观察、理解、动手操作等数学活动来体验图形放大与缩小的方法;培养学生的空间观念和动手操作能力。 3、情感态度目标:激发学生学习数学的兴趣和求知欲,使学生积极参与学习活动,在学习过程中感受成功的喜悦。

教学重难点

【教学重点】 理解图形的放大与缩小。

教学过程

一、 创设情境,导入新课。

1、观察体验。

2、学生举例,自由发言。

师:你们在生活中还见过其他放大缩小的现象吗?指名说一说。 师:看来放大缩小现象在我们生活中的各个领域应用还是十分普遍的。这些现象也包含着一定的数学知识。今天这节课我们就来一起研究“图形的放大与缩小”。 板书课题。

二、探究新知。

(一)感知图形的放大。

(多媒体出示方格纸上的平面图形,例4.)

1、初步感知画在方格纸上的平面图形。 师:我们已经认识过许多的平面图形了。老师这把正方形、长方形和直角三角形分别画在了方格纸上。

大家看一看画在方格纸上的三个图,我们能获得哪些相关的数学信息?

学生小组自由谈。 正方形边长3个方格、 长方形长6个方格,宽3个方格 直角三角形两条直角边分别是3个方格、6个方格。

2、理解要求。

(1)多媒体出示例4的要求——2:1画出这个图形放大后的图形。

(2)按“2:1”放大是什么意思? 先让学生说出自己的理解,然后教师说明。(按2:1放大,也就是各边放大到原来的2倍。)

3、通过画正方形了解画法。

(1)那么我们怎么样才能把正方形按2:1放大呢?请同桌之间相互讨论。

(2)汇报:原来的边长是3个方格,放大后图形的边长是6格。

(3)学生在方格纸上画出正方形按2:1放大后的图形,

(4)教师总结学生方法中的重要一点:先确定一个固定的点,以它做为

确定图形位置的重要点再画出其他的部分。

(5)教师用多媒体课件展示画放大后正方形的过程。

4、经历画长方形和直角三角形的过程。

(1)接下来我们继续按照2:1放大长方形和直角三角形,你觉得需要知道些什么条件呢?点名学生回答。

(2)下面就按照你们的方法放大长方形和直角三角形吧,请画在方格纸上。

(3)学生汇报画法

(4)观察放大后的直角三角形,相邻的两条直角边放大了2倍,那么他的斜边也放大了2倍吗?你怎么知道的?汇报测量结果。

5、置疑。

(2)小组合作学习讨论解决学生提出的置疑。

(3)选取代表介绍自己的方法和找到的答案。教师配合多媒体课件随机演示验证的过程。 (4)学生试概括发现,多媒体出示。(一个图形按一定的比放大,它的每条边都按相同的比放大。)

(5)多媒体出示。一个图形按一定的比放大,图形变大了,但形状没变

(二)感知图形的缩小。

1、出示缩小的要求。

2、说说对1:3的理解

3、学生作图,并相互检查。

4、选取学生代表的作品展示,并说说是怎么画的。(多媒体完成按一定的比缩小后画出的图形。)

5、观察原图和缩小后的图形。学生试说自己的发现并尝试总结。

按3:1画出下图

6、 总结发现。

(1)学生讨论。

图形的各边按相同的比放大或缩小后,所得的图形与原图形有什么关系呢?

学生试总结图形按一定的比放大或缩小的特点。

(2)教师在学生充分的发言之后用多媒体出示图形放大和缩小的特点:所得的图形只是大小发生了变化,形状没变。

三、巩固应用

画一画,

学生根据教师给出一个放大或者缩小的比,然后在方格纸上画出按这个比放大或者缩小后的图形。画完后学生展示自己的作品并介绍画法。

1、按4:1画出下面图形放大后的图形.并说理由。

2、按1:2画出下面图形缩小后的图形.

3、按1:2画出下面图形缩小后的图形.

4、下面哪个图是图形a按2:1扩大后得到的图形?

5、按3:1画出下面图形放大后的图形.

【主要是评价学生按一定的比例对放大和缩小图形的画法的掌握】

四、课堂小结

通过这节课你学到了什么?

结束语:同学们,今天这节课我们学习到了图形的放大与缩小,在日常生活中,有许多这样的现象,只要大家做生活的有心人,运用今天所学的知识,你们就能创造许多新鲜有趣的事物,用以丰富和美化我们的生活。

五、课堂作业:

课本1、2题

教学目标

1.1 知识与技能:

1.在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数,知道0既不是正数也不是负数。

2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

1.2过程与方法 :

经历负数的认识过程,体验比较、归纳总结的方法。

1.3 情感态度与价值观 :

感受数学与实际生活的联系,激发学习兴趣,培养学思结合的良好学习习惯,体会数学知识之间内在联系的逻辑之美。

教学重难点

2.1 教学重点

能用正、负数表示生活中两种相反意义的量。

2.2 教学难点

用负数解决生活中的实际问题。

教学工具

多媒体课件

教学过程

一、游戏引入

同学们,今天我们来玩个游戏轻松一下,游戏叫“我正你反”。游戏规则:老师说一句话,请你说出与它意思相反的话。

1、向上看(向下看)

2、向前走200米(向后走200米)

3、电梯上升15层(电梯下降15层)

4、零上10摄氏度(零下10摄氏度)

很好,接下来,老师换一个游戏规则。老师给大家看一幅图片(课件出示第2页例1的几幅图)。

二、初步感知

师:同学们以前有没有见过类似于第2页例1的几幅图的情景呢?

生:有,看天气预报的时候。

出示例1情境图.

学生读一读。

三、认识负数

1、认识温度计,理解用正负数来表示零上和零下的温度。

师:(课件出示温度计)同学们,认识它吗?

生:温度计。

师:你知道它们表示什么?(课件出示℃、℉)

生:℃表示摄氏温度,读作“摄氏度”。

生:℉表示……

师:℉表示华氏温度,读作“华氏度”。 那我国用什么来计量温度呢?

生:我国用摄氏度来计量温度。

师:一大格表示多少摄氏度?一小格表示多少摄氏度?

通过课件展示让学生对温度计做进一步的认识,让学生知道一大格表示10摄氏度,一小格表示2摄氏度。

师:0摄氏度怎样规定的?你知道吗?

生:水结冰的温度定为0℃。

师:是的,科学家把水结冰的温度定为0℃。读作:0摄氏度。比0℃ 低的温度叫零下温度,通常在数字前加“—”(负号)

师:零上温度用正数表示 ,零下温度用负数表示。

生:零上10摄氏度记作:+10℃;零下10摄氏度记作:-10℃ 。

2、读出水银柱所表示的温度。(课件出示)

教师课件出示水银柱所表示的温度,引导学生读一读。

3、从上面的天气预报图中你了解到哪些信息?

例如:北京最高温度是5℃,最低温度是零下5 ℃。

师:北京-5℃和5℃一样吗?都表示什么意义呢?

生:-5℃和5℃不一样, -5℃表示比零度还要低5摄氏度, 5℃表示比零度高5摄氏度。

生:-5℃和5℃不一样, -5℃比零摄度冷, 5℃表示比零摄氏度热。

教师小结:5℃和- 5℃表示具有相反意义的量。

4、正确读出例1中的各个城市的天气温度。

师生一起小结:当气温高于0℃的时候,我们在数字前面加一个“+”号或者直接用数字来表示,读作零上×摄氏度。当气温低于0℃的时候,我们在数字前面加一个“-”号来表示,读作零下×摄氏度。因此,+5℃表示零上5摄氏度,读作正三摄氏度;-5℃表示零下5摄氏度,读作负三摄氏度。(板书:+5℃ 正三摄氏度;-5℃ 负三摄氏度)

学生自主完成例1的信息表,然后和同桌说说各数表示的意思。

指名学生回答,教师点评并总结。

5、教学教材第3页例2。

师:接下来我们再来看一下第3页例2的图片,每个数字表示什么意思?

生:“2000”表示存入2000元。

生:“-500” 表示支出了500元。

生:“-132” 表示支出了132元。

生:“500”表示存入500元。

师:你能找到意思相反的词语或者数学符号吗?(提示2000.00与+2000.00代表相同的意思。)

师:那在这里500.00和-500.00分别表示什么意思呢?

生:500.00表示存入500元, -500.00表示支出500元

学生说出各个数字的含义。

教师小结:500和-500表示具有相反意义的量。

师:很好,同学们再试着说说图中其他数各表示什么。

学生交流。

6、思考总结

教师引导学生比较例1和例2,找出他们的共同点。

师:同学们比较一下例1和例2,他们有什么共同点吗?

学生小组讨论汇报。提示:在例1和例2中,都有两种数来表示两种相反意义的量—零上温度和零下温度,支出与收入。

7、0是什么数?

师:我们把海平面的高度看做多少呢?

生:看作0。

把海平面0当成正数和负数的分界线。

师:(课件展示)珠穆朗玛峰比海平面高8844.43米,怎么表示?

生:记作+ 8844.43米。

师:吐鲁番盆地比海平面低155米,如何表示?

生:记作-155米。

课件展示小知识:海平面,顾名思意,就是大海的水面。它用在测量地面高度上,又称海拔。我国所有的大地测量和标志,都是以黄海海面的基点开始的,任何海拔标高,都是相对于黄海海面的基准点。

(通过对海平面的认识,温度计上的0,得出0像一条分界线,把正负数分开,所以0既不是正数也不是负数。)

小结:为了表示两种相反意义的量,这里出现了一种新的数:-16,-500。像-16,-500,-3,-0.4……这样的数叫做负数。- 读作负八分之三。

而以前所学的16,2000, ,6.3……这样的数叫做正数。正数前面也可以加上“+”号,例如+16,+ ,+6.3等(也可以省去“+”号)。+6.3读作正六点三。

师:0像一条分界线,把正负数分开。0既不是正数,也不是负数。

8、做一做

课件出示题目:

(1)、用正负数表示。

①、零上12.5摄氏度表示为:________,(+12.5 ℃)

零下3.5摄氏度表示为:________。(-3.5 ℃)

②、广西某地有一天坑,

坑口高于海平面125m,表示为:________, (+125)

坑底低于海平面 m,表示为:________.(—100)

(2)、先读一读,再议一议:观察这些数,可以怎样分类?

学生同桌讨论,教师指名汇报。

9、教师引导学生总结:数可以分成正数、0、负数。正数包括正整数、正分数、正小数 ,负数包括负整数、负分数、负小数 ,0既不是正数,也不是负数。它是正、负数的分界点。

正数前面可以写“+”,但通常不写,而负数前面的“-”必须写。正数前面可以读“正”,但通常不读(如果有“+”号必须读),而负数前面的“负”必须读。

四、走进生活

1.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 __________。月球表面的最低温度是 __________。(100℃,0℃, -88.3 ℃, -183℃)

2、做一做

胜5场记作 _______, 读作_________;(+5场,正五场)

输3场记作 _______ , 读作 _________。(-3场,负三场)

收入100元记作_______,读作___________;(+100元,正一百元)

支出200元记作_______ ,读作___________。(-200元,负二百元 )

学生交流,指名说一说。

3、叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?

学生交流,指名说一说。

4、六年级三个班进行智力抢答赛,答对一题得10分,答错一题扣10分,不答得0分。根据三个班的得分,说一说他们的答题情况。

学生交流,指名说一说。

5、你会用正负数表示下面各地的海拔高度吗?

(1)、华山比海平面高2000m,记作(+ 2000m )

(2)、死海比海平面低392m,记作(- 392m )

学生交流,指名说一说。

6、我能判断对错

(1)任何一个负数都比正数小。(√)

(2)一个数不是正数就是负数。(×)

(3)因为“4”前面没有“+”号,所以“4”不是正数。(×)

(4)上车5人记作“+5人”,则下车4人记作“-4人”。( √)

(5)正数都比0大,负数都比0小。(√)

(6)5゜c和+5゜c所表示的气温一样高。(√)

7、小结交流

师:你还在什么地方见过负数吗?

生:家庭收支账本上。

生:冰箱的冷冻室温度。

生:地图上显示的海拔高度。

五、巩固练习

1、教材第4页“做一做”第1题。

学生独立读出-3℃和-18℃这两个温度,并根据题干思考北京和哈尔滨的温度哪个低些。

教师指名回答。

2、教材第4页“做一做”第2题。

学生小组依次回答,教师集体订正。

教师强调:0既不是正数,也不是负数。

课后小结

师:通过这一节课的学习,你有什么收获?

师:这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

板书

认识负数

+5℃ 正三摄氏度 -5℃ 负三摄氏度

5 三 -5 负三

八分之三 -

负八分之三

0既不是正数,也不是负数。

人教版九年级上数学教案电子版篇二

【教学目标】

1.理解、积累“丰润、红晕、翅翼”等词语。

2.感知诗中的形象,理解诗人的思路和全诗的主旨。

3.赏读诗歌,理解诗歌意境,理解诗人所表达的情感。

【教学重难点】

重点:结合诗歌内容,理解诗人所表达的情感。

难点:理解诗歌字里行间流露出的浪漫主义色彩。

【教学过程】

一、导入

大家知道穆旦这位诗人吗?他是的现代主义诗人,写过很多优秀的诗歌。今天,就让我们来学习他的《我看》。

二、预习查评

1.检查预习学案的完成情况。

2.检查课文诵读和字词掌握情况。

(1)字音

丰润(rùn) 红晕(yùn) 揉过(róu) 翅翼(yì) 忧戚(qì)

枉然(wng) 勃发(bó) 谐奏(xié) 飘逸(yì) 挽(wn) 摇曳(yè)

(2)词语释义

丰润:本文指指丰茂滋润。

忧戚:忧伤烦恼。戚,悲伤。

枉然:白白地。

飘逸:漂浮、飘散。

流盼:转动目光观看。盼,看视。

摇曳:摇荡,晃动。

3.检查搜集的作者、作品等情况。

(1)作者简介

穆旦(1918—1977),原名查良铮,曾用笔名梁真,祖籍浙江省海宁市袁花镇,出生于天津。现代主义诗人、翻译家。穆旦于40年代出版了《探险者》《穆旦诗集(1939~1945)》《旗》三部诗集,将西欧现代主义和中国诗歌传统结合起来,诗风富于象征寓意和心灵思辨,是“九叶诗派”的代表性诗人。主要译作有俄国普希金的作品《青铜骑士》《普希金抒情诗集》、英国雪莱的《云雀》《雪莱抒情诗选》,英国拜伦的《唐璜》《拜伦抒情诗选》《拜伦诗选》,英国《布莱克诗选》《济慈诗选》。

(2)背景

本诗选自《穆旦诗文集》(人民文学出版社2007年版),是穆旦在联大初期创作的诗歌作品。这首诗创作于1938年滇南小城蒙自。1938年6月,满腔爱国热血的诗人,以自己最深沉的情感描写了眼中的大自然和万物,在深情的咏唱中,蕴蓄着希望和新生。

三、初读感知

1.以自己喜欢的方式熟读这首诗。

2.诗歌分为几个部分,每个部分的内容是什么?

第一部分(1、2节):由远及近,描绘了一幅美好、令人沉醉的大自然图景。

第二部分(3—5节):议论、抒情,抒发诗人对生命的热爱,对自由的憧憬之情,也含蓄的表达了诗人愿以热血青春报效祖国的深情。

和自然万物同呼吸共命运,生于斯,奋斗于斯,葬于斯。

4.理解诗句“我看流云慢慢地红晕/无意沉醉了凝望它的大地”所运用的写作手法。

明确:这是大跨度的隐喻:阳光照耀,填空晴朗深远,一尘不染,天上流云映有阳光和地上红土的颜色,于是便有红晕;地上深红的红土,在阳光的普照与飘过碧绿天空的流云的呼应下,仿佛沉醉了一般。诗人置身于如此的风景之中,诗人沉醉的生命已经飞腾,与春之神韵一同漫游——“去吧,去吧,哦生命的飞奔,/叫天风挽你坦荡地漫游”。

五、深入探究

1.分析本诗的浪漫主义色彩。

明确:战时的穆旦写下了具有浪漫主义色彩的自然抒情诗《我看》,洋溢着青春气息。让生命与自然融合,“我”看到自然风景“向晚的春风”“丰润的青草”“绿潮”,此外,“我”还看到了飞鸟融入天空,红晕与大地一体,这是一种人与自然对生命的感知。

2.这首诗所表达的情感与陶渊明的思想境界有哪些不谋而合之处?

答案示例:《我看》中诗人通过自然风景表达出了对于闲适生活的追求,最终达到自然与生命融合“哦,让我的呼吸与自然河流!”而这种情感的表达在陶渊明的诗歌中早已有之,“采菊东篱下,悠然见南山”的闲适之情与“久在樊笼里,复得返自然”的逍遥自在恰恰与穆旦的生命与自然的合流不谋而合。

3.这首诗的主题是什么?

(3)体验独特,写实中多有新意。

这首诗虽然是写实,但由于体验独特,写实中多有新意。在“春风”与“青草”间用“揉”的动作来衔接,大概不是多数人能想到的。“我看流云慢慢红晕/无意沉醉了凝望它的大地”,似是神来之笔——流云通常不会红晕,而且流云“沉醉了凝望它的大地”的大跨度隐喻似乎也缺乏必要的情感逻辑——殊不知,这几乎就是对红土高原春之风景的写实:阳光照耀,天空晴朗深远,一尘不染,天上流云映有阳光和地上红土的颜色,于是便有红晕;地上深红的红土,在阳光的普照与飘过碧绿天空的流云的呼应下,仿佛沉醉了一般。诗人置身于如此的风景之中,诗人沉醉的生命已经飞腾,与春之神韵一同漫游——“去吧,去吧,哦生命的飞奔,/叫天风挽你坦荡地漫游”。

六、拓展延伸

读穆旦的《春》,试谈谈自己对这首诗的理解。

穆旦

绿色的火焰在草上摇曳,

他渴求着拥抱你,花朵。

反抗着土地,花朵伸出来,

当暖风吹来烦恼,或者欢乐。

如果你是醒了,推开窗子,

看这满园的欲望多么美丽。

蓝天下,为永远的谜蛊惑着的

是我们二十岁的紧闭的肉体,

一如那泥土做成的鸟的歌,

你们被点燃,卷曲又卷曲,却无处归依。

呵,光,影,声,色,都已经赤裸,

痛苦着,等待伸入新的组合。

人教版九年级上数学教案电子版篇三

“路程、时间与速度”教学实录

教学内容:人教版小学数学4年级上册第五单元。

学情分析:

本节课是4年级“数与代数”的部分内容。本课的学习,目的是要让学生在实际情境中,理解并掌握路程、速度与时间三者之间的关系。对于求速度这个问题学生并不陌生,可以在已有经验的基础上进行概括,完成这一教学目标。因此,本课的难点是学生对“速度”这一抽象概念的理解。学生在生活中,对“速度”的感知是模糊的,没有形成模型,是需要经过学习逐渐明确的。

教学目标:知识目标:

①让学生在实际情境中,理解“速度”以及“路程、时间与速度”之间的关系。

②利用画线段图的方法理解题意。能力目标:培养学生抽象概括的能力。情感目标:在求知中感受数学与生活的密切联系,在自主探索中品味成功的喜悦。

教学重点:在实际情境中,理解并掌握路程、时间与速度之间的关系,解决生活中的简单问题。

教学难点:对“速度”概念的理解。

教学策略: 激发学生的学习兴趣,创设学生喜欢的教学情境,唤起学生思考、探究的欲望;给学生提供足够的独立思考空间,让他们自主探究新知; 分散难点,从直观形象逐步归纳成抽象概念,再把概念引向纵深;贴近生活,让学生体会数学在现实生活中的作用和价值;用多媒体课件直观演示,增强感染力。

教学流程:

一、创设生活情境,由形象到抽象

师:同学们,这是我们学校春季运动会的比赛现场。各位小运动员都在为班级争取荣誉。(多媒体再现生活情境——校运动会比赛现场。)

师:在这次运动会中,我们将选出一名运动员作为“田径之星”,你们认为应该怎么选呢?(生答略。)

师:让我们来看看运动员的成绩表。(课件出示运动员的比赛成绩表。)

师:你们认为谁能成为“田径之星”,能说你的理由吗?(生答略。)

师:说得很有道理,那么下面还有一组运动员的成绩表。同学们再看一看。

师:这些同学中谁能成为“田径之星”呢?

师:出现不同意见了,可学校只选—名“田径之星”,那我们怎么办呢?

生:800÷4=200(米)720÷3=240(米)

师:这两个结果分别表示什么呢?

师:我们可以借助线段图来表示这几个数量之间关系。

(生说,师板演。)

生:路程÷时间=速度。(师板书。)

师:每分跑200米,是速度的一种表示方法。也可以这样来记,小鹏跑步的速度是200米,分,读作200米每分。这里的速度单位是由长度单位和时间单位组成的,中间还有一条向右倾斜的线。

师:同学们能不能也像老师这样,用线段图表示出第二个算式中的3个数量。

(生画线段图,汇报。)

二、联系生活实际,丰富已有感知

师:同学们,在我们的生活中还有很多关于速度的信息。你们看,这是老师收集到的一些有关速度的信息。(课件出示信息。)

师:从这些关于速度的信息中,你发现了什么?

(生通过观察、比较,发现表示运动物体速度的共同特征。强化了对速度的抽象理解。)

三、提供思维方法,自主合作探究

师:大家算一算,小宁5分钟能跑多少米,小宁跑2640米,需要多长时间。(生答略。)

师:路程、速度与时间3个数量之间还有怎样的关系?

(生讨论,通过补充、质疑加深了对新知的理解。)

四、趣味情境练习,思维引向纵深

师:我们利用这些数量关系,共同来解决一些实际的问题。

一辆汽车的行驶速度为60千米/时,从甲地开往乙地需要3小时。

60×3=180表示什么?

180÷3=60表示什么?

180÷60=3表示什么?

师:刘翔在世锦赛中以12秒95的成绩获得110米栏冠军。你能不能求出刘翔每秒跑的速度?(课件出示刘翔比赛画面。可用计算器计算。)

师:刘翔从起跑到结束,是不是每秒钟都跑8.49米呢?(生讨论。)

师:看来同学们对速度又有了进一步的理解。正如你们所说的,速度并不是真正每秒都跑这么远,跑赛或行车过程中受客观因素的影响。有时速度并不是匀速的,与我们之前学习的平均数类似,是计算出来的一个平均值。

师:刘翔最好成绩的速度是8.53米/秒。

(师总结略。)

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
2025年人教版九年级上数学教案电子版(三篇) 文件夹
复制