阅读是一种享受,通过阅读我们可以感受到文字的力量和魅力。良好的人际关系对于个人发展和工作生活都至关重要,我们要注重维护人际关系。以下是小编为大家整理的古诗词佳句,可以让您领略中国古代文化的魅力。
1.全等形:形状大小相同,能完全重合的两个图形.
2.全等三角形:能够完全重合的两个三角形.
二.重点。
1.平移,翻折,旋转前后的图形全等.
2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.
3.全等三角形的判定:
sss三边对应相等的两个三角形全等[边边边]。
sas两边和它们的夹角对应相等的两个三角形全等[边角边]。
asa两角和它们的夹边对应相等的两个三角形全等[角边角]。
aas两个角和其中一个角的对边开业相等的两个三角形全等[边角边]。
hl斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]。
4.角平分线的性质:角的平分线上的点到角的两边的距离相等.
5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式。
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点。
(1)解析法。
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法。
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法。
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤。
(1)列表:列表给出自变量与函数的一些对应值。
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
3.平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。
5.直角三角形斜边上的中线等于斜边的一半。
6.矩形的定义:有一个角是直角的平行四边形。
7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。ac=bd。
8.矩形判定定理:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。
9.菱形的定义:邻边相等的平行四边形。
10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
11.菱形的判定定理:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。
s菱形=1/2×ab(a、b为两条对角线)。
12.正方形定义:一个角是直角的菱形或邻边相等的矩形。
13.正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
14.正方形判定定理:1.邻边相等的矩形是正方形。2.有一个角是直角的菱形是正方形。
15.梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
16.直角梯形的定义:有一个角是直角的梯形。
17.等腰梯形的定义:两腰相等的梯形。
18.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
19.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
快速提高数学成绩的方法。
1掌握正确做题方法。
数学学习离不开做题,对于大多数学生来说很难做到举一反三,既然做不到我们就需要用用大量的题来弥补,但是做题也不能盲目的去做。第一,做题要由易到难,第二,做题要先专题后限时模考,第三,做题要学会整理错题,第四,做题要学会分析试题,第五,做题要会猜题。
2巩固基础知识。
掌握初中数学知识点是由浅入深的,只有在掌握了基础知识的前提下,识记理解公式、定理,运用公式、定理分析解决问题,才能对数学问题进一步深化与提高。
3发现规律。
在做题的过程中要多发现规律,不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个。
4保持好心态。
心态问题是影响考试的最重要的原因。走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。反过来,如果进考场就底气不足,必定会影响自己的发挥。
5总结梳理,提炼方法。
数学复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。
1.整式:整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
2.乘法
(1)同底数幂相乘,底数不变,指数相加。
(2)幂的乘方,底数不变,指数相乘。
(3)积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
3.整式的除法
(1)同底数幂相除,底数不变,指数相减。
(2)任何不等于零的数的零次幂为1。
平移和旋转是几何中全等变换的一种重要的方式,其中旋转是对大家几何变化能力进行考察的常用手段。
旋转问题之所以难,就是因为他通过旋转使得图形中出现很多相等的边和相等的角,但是这不是图中直接告诉的,是需要大家自己发现的,而旋转与后面的二次函数、反比例函数、四边形等知识结合在一起,会使的题目灵活性非常强,所以这一块在学基础知识的时候一定要牢固把握。
2.平行四边形
平行四边形,是学习矩形、菱形、正方形的基础,他的判定方式有五种,在实际应用的`时候,同学们往往难以决定到底要采取哪种方式,这就需要同学们根据图形灵活的选择,不同的办法进行解决。
3.特殊平行四边形行
特殊平行四边形是初三的内容,但是很多地方都把它提到初二来讲。这部分知识灵活性强,变化大,综合难度高,往往是同学们觉得几何难学的开端。解决的办法就是把他们的性质和判定列表写出来,由于表述非常的类似和接近,记忆起来比较困难。这就需要同学们运用对比分析的方法,搞清楚这三种图形各自的性质和判定,这样才能在应用的时候不至于混淆。
1.分式:一般地,用a、b表示两个整式,ab就可以表示为 的形式,如果b中含有字母,式子 叫做分式。
2.有理式:整式与分式统称有理式;即 。
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义。
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单。
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解。
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式。
7.分式的乘除法法则: 。
8.分式的乘方: 。
9.负整指数计算法则:
(1)公式: a0=1(a0), a—n= (a
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式: , ;
(4)公式: (—1)—2=1, (—1)—3=—1。
10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母。
11.最简公分母的确定:系数的最小公倍数?相同因式的最高次幂。
12.同分母与异分母的分式加减法法则: 。
13.含有字母系数的一元一次方程:在方程ax+b=0(a0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程。注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数。
14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程。特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0。
15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程。
16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根。
17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根。
18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加验增根的程序。
初二学生想要学好数学,一定要学会提前预习。将老师要将的内容提前预习一下,对于自己在预习中会出现的不理解的概念或者不懂的知识点,要做好标记和记录,这样初二学生在数学课堂上才会注意力集中,这样在听课的过程中才能够跟上老师的讲课思路,自己的思维才能够集中。带着问题去听老师讲课,这样会将被动的学习变为主动,可以有效的提高初二新生在数学课堂上的学习效率。
课下要学会及时复习
当初二学生在课上认真听讲后,那么对于初二数学的学习课后也是需要及时复习的。当老师讲完初二数学一节课的内容之后,初中生一定要听明白,不要留下任何的疑点,有不懂的地方要及时的问同学或者老师。这样在课后复习的时候才能够自己独立的去完成作业。每一次的初二数学课后,初中生都应该将这节课学习的知识点进行归纳和整理。
(一)定义
有理数为整数(正整数、0、负整数)和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
(二)有理数的性质
(1)顺序性
(2)封闭性
(3)稠密性
(三)有理数的加法运算法则
1、同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两数相加得0。
4、一个数同0相加仍得这个数。
5、互为相反数的两个数,可以先相加。
6、符号相同的数可以先相加。
7、分母相同的数可以先相加。
8、几个数相加能得整数的可以先相加。
9、减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。
一、函数:
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点。
(1)关系式(解析)法。
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法。
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法。
用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤。
(1)列表:列表给出自变量与函数的一些对应值。
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数。
1、正比例函数和一次函数的概念。
一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
1、二元一次方程。
含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
2、二元一次方程的解。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组。
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4、二元一次方程组的解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
5、二元一次方程组的解法。
(1)代入(消元)法(2)加减(消元)法。
1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数。
2、平均数。
(2)加权平均数:
3、众数。
一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数。
一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。
加权平均数。
3、众数
一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数
一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
第七章 平行线的证明
1、平行线的性质
一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。
也可以简单的说成:
两直线平行,同位角相等;
两直线平行,内错角相等;
两直线平行,同旁内角互补。
2、判定平行线
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
也可以简单说成:
同位角相等两直线平行 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。
其他两条可以简单说成:
内错角相等两直线平行
同旁内角相等两直线平行
1.某工厂生产了一批零件共1600件,从中任意抽取了80件进行检查,其中合格产品78件,其余不合格,则可估计这批零件中有______件不合格.
2.下列调查工作需采用普查方式的是()
a.环保部门对淮河某段水域的水污染情况的调查
b.电视台对正在播出的某电视节目收视率的调查
c.质检部门对各厂家生产的电池使用寿命的调查
d.企业在给职工做工作服前进行的尺寸大小的调查
3.为了解某校九年级学生每天的睡眠时间情况,随机调查了该校九年级20名学生,将所得数据整理并制成下表:
据此估计该校九年级学生每天的平均睡眠时间大约是______小时.
4.一养鱼专业户从鱼塘捕得同时放养的草鱼100条,他从中任选5条,称得它们的质量如下(单位:kg):1.3,1.6,1.3,1.5,1.3.则这100条鱼的总质量约为______kg.
1.总体是指_________________________,个体是指_____________________,样本是指________________________,样本的个数叫做___________.
2.样本方差与标准差是衡量______________的量,其值越大,______越大.
3.频数是指________________________;频率是___________________________.
4.得到频数分布直方图的步骤_________________________________________.
5.数据的统计方法有____________________________________________.
定义:有两组对边分别平行的四边形叫做平行四边形。
性质:
1、对边:分别平行且相等;
2、对角:分别相等;
3、对角线:互相平分;
4、对称性:中心对称图形。
判定定理
1、两组对边分别平行的四边形是平行四边形(定义);
2、两组对边分别相等的四边形是平行四边形;
3、一组对边平行且相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形;
5、对角线互相平分的四边形是平行四边形。
三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
定义:有一个角是直角的平行四边形。
性质:
1、具有平行四边形的所有性质;
2、四个角都是直角;
3、对角线互相平分且相等;
4、对称性:中心对称图形,轴对称图形。
判定定理:
1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;
分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。 约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。 分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。 注意:
(1)分式的约分和通分都是依据分式的基本性质;
(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分.
3.求最简公分母的方法是:
(1)将各个分母分解因式;
(2)找各分母系数的最小公倍数;
(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的`加减运算和解分式方程时起非常重要的作用)。
关于轴对称知识点总结内容,希望同学们很好的掌握下面的内容。
一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。互相重合的点叫做对应点。
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。互相重合的点叫做对应点。
(1)区别。
轴对称图形讨论的是"一个图形与一条直线的对称关系" ;轴对称讨论的是"两个图形与一条直线的对称关系"。
(2)联系。
把轴对称图形中"对称轴两旁的部分看作两个图形"便是轴对称;把轴对称的'"两个图形看作一个整体"便是轴对称图形。
希望上面对轴对称知识点总结内容,可以很好的帮助同学们对此知识的巩固学习,相信同学们会从中学习的很棒的吧。
在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性
3、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。 四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于(n2)180°;
多边形的外角和定理:任意多边形的外角和等于360°。
6、设多边形的边数为n,则多边形的对角线共有条。从n边形的一个顶点出发能引(n-3)
2条对角线,将n边形分成(n-2)个三角形。
1、平行四边形的定义
两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质
(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等
(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。 平行线间的距离处处相等。
5、平行四边形的面积 s平行四边形=底边长×高=ah
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;。
两组对角分别相等的四边形是平行四边形;。
对角线互相平分的四边形是平行四边形;。
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形。
(1)矩形。
性质:矩形的四个角都是直角;。
矩形的对角线相等;。
矩形具有平行四边形的所有性质。
判定:有一个角是直角的平行四边形是矩形;。
对角线相等的平行四边形是矩形;。
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形。
性质:菱形的四条边都相等;。
菱形的对角线互相垂直,并且每一条对角线平分一组对角;。
菱形具有平行四边形的一切性质。
判定:有一组邻边相等的平行四边形是菱形;。
对角线互相垂直的平行四边形是菱形;。
四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3梯形:直角梯形和等腰梯形。
等腰梯形:等腰梯形同一底边上的两个角相等;。
等腰梯形的两条对角线相等;。
同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析。
加权平均数、中位数、众数、极差、方差。
1、轴对称图形就是把一个图形沿着某一条只限对折,对折后直线两侧的部分完全重合,这样的图形就是轴对称图形。折痕所在的直线是图形的对称轴。
2、轴对称图形的特征:对折后,对称轴两侧能够完全重合。
3、画简单轴对称图形的方法:
(1)、找出已知图形的几个关键点;
(2)、然后根据各个对称点到对称轴的距离相等的特点,在对称轴的另一侧找出关键点的对称点。
(3)、最后按照已知图形的形状顺序连接个对称点,就画出了所有图形的另一半。
4、判断一个图形是否是轴对称图形的方法:可以利用轴对称图形的意义进行判断,即把这个图形沿某条直线对折,看折痕两侧的图形能否完全重合,能够重合的图形就是轴对称图形,不能完全重合的图形就不和轴对称图形。
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)矩形的对边平行且相等
(2)矩形的四个角都是直角
(3)矩形的对角线相等且互相平分
(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形
(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积 s矩形=长×宽=ab
1、菱形的定义
有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)菱形的四条边相等,对边平行 (2)菱形的相邻的角互补,对角相等
(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角
(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
4、菱形的面积
s菱形=底边长×高=两条对角线乘积的一半
2、性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分、
3、判定:
(1)两组对边分别平行的四边形是平行四边形:
(2)两组对边分别相等的`四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形:
(5)对角线互相平分的四边形是平行四边形、
4、对称性:平行四边形是中心对称图形、
5、平行四边形中常用辅助线的添法
(1)、连对角线或平移对角线
(2)、过顶点作对边的垂线构造直角三角形
(4)、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)、过顶点作对角线的垂线,构成线段平行或三角形全等。
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。
2分式的运算。
(1)分式的乘除。
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减。
加减法法则:同分母分式相加减,分母不变,把分子相加减;。
异分母分式相加减,先通分,变为同分母的分式,再加减。
3整数指数幂的加减乘除法。
4分式方程及其解法。
第二章反比例函数。
1反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)。
性质:两支的增减性相同;。
2反比例函数在实际问题中的应用。
1.分式:一般地,用a、b表示两个整式,ab就可以表示为 的形式,如果b中含有字母,式子 叫做分式.
2.有理式:整式与分式统称有理式;即 .
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
7.分式的乘除法法则: .
8.分式的乘方: .
9.负整指数计算法则:
(1)公式: a0=1(a0), a-n= (a
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.
11.最简公分母的确定:系数的最小公倍数?相同因式的最高次幂.
12.同分母与异分母的分式加减法法则: .
13.含有字母系数的一元一次方程:在方程ax+b=0(a0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.
14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加验增根的程序.
希望为大家提供的八年级上册数学知识点讲解,能够对大家有用,更多相关内容,请及时关注数学网!
2025年八年级数学知识点(大全19篇)
文件夹