最新八年级上册数学一次函数知识结构图通用
文件格式:DOCX
时间:2023-05-02 00:00:00    小编:考公学习搭子

最新八年级上册数学一次函数知识结构图通用

小编:考公学习搭子

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

八年级数学一次函数知识结构图篇一

一般地,形如y=kx+b(k、b是常数,k≠0)函数,叫做一次函数。当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数。

一次函数y=kx+b的图象是经过(0,b)和(—b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到。(当b0时,向上平移;当b0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k≠0)

(2)必过点:(0,b)和(—b/k,0)

(3)走向:k0,图象经过第一、三象限;

k0,图象经过第二、四象限

b0,图象经过第一、二象限;

b0,图象经过第三、四象限

(4)增减性:k0,y随x的增大而增大;k0,y随x增大而减小。

(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴。

当b0时,将直线y=kx的图象向下平移b个单位。

直线y=k1x+b1与y=k2x+b2的位置关系

(1)两直线平行:k1=k2且b1≠b2

(2)两直线相交:k1≠k2

(3)两直线重合:k1=k2且b1=b2

(1)根据已知条件写出含有待定系数的函数解析式;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数解析式中得出结果。

函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题。建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题。

(1)从函数图象的形状判定函数的类型;

(2)从横、纵轴的实际意义理解图象上点的坐标的实际意义。解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数。

任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值。从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值。

任何一个一元一次不等式都可以转化为ax+b0或ax+b0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围。

(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=—(a/b)x++c/b的图象相同。

(2)二元一次方程组

a1x+b1y=c1,a2x+b2y=c2;的解可以看作是两个一次函数y=(a1/b1)x+c1/b1和y=—(a2/b2)x+c2/b2的图像交点。

八年级数学一次函数知识结构图篇二

在日常的学习中,是不是听到知识点,就立刻清醒了?知识点在教育实践中,是指对某一个知识的泛称。掌握知识点有助于大家更好的学习。下面是小编帮大家整理的八年级数学知识点归纳:一次函数的应用,欢迎大家分享。

分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。

(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。

(2)理清题意是采用分段函数解决问题的关键。

常用公式

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:(x1+x2)/2

3.求与y轴平行线段的中点:(y1+y2)/2

5.求两个一次函数式图像交点坐标:解两函数式

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

3、勾股数

满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

2、三角形内角和定理:三角形三个内角的和等于180度。

(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

(2)三角形的外角与它相邻的内角是互为补角。

3、三角形的外角与它不相邻的内角关系

(1)三角形的一个外角等于和它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤

(1)根据题意,画出图形。

(2)根据条件、结论,结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

1、平均数

①一般地,对于n个数x1x2、、、xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数最多的那个数据叫做这组数据的众数。

③平均数、中位数和众数都是描述数据集中趋势的统计量。

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

⑥各个数据重复次数大致相等时,众数往往没有特别意义。

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

②数学上,数据的离散程度还可以用方差或标准差刻画。

③方差是各个数据与平均数差的平方的平均数。

④其中是x1,x2、、、、、xn平均数,s2是方差,而标准差就是方差的算术平方根。

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

三角形知识概念

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的'外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:

(1)三角形的内角和:三角形的内角和为180°

(2)三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°

(4)多边形的外角和:多边形的外角和为360°

(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。

位置与坐标

1、确定位置

在平面内,确定一个物体的位置一般需要两个数据。

2、平面直角坐标系

①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。

3、轴对称与坐标变化

关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

解一元一次方程

1、等式与等量:用"="号连接而成的式子叫等式、注意:"等量就能代入"!

2、等式的性质:

3、方程:含未知数的等式,叫方程、

4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!

10、列一元一次方程解应用题:

(1)读题分析法:…………多用于"和,差,倍,分问题"

(2)画图分析法:…………多用于"行程问题"

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

统计的初步认识

1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。

2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。

3、能够看出折线统计图所提供的信息,并回答相关的问题。

补充内容:

1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。

2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。

课后练习

1、统计学的基本涵义是(d)。

a、统计资料

b、统计数字

c、统计活动

d、是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。

2、要了解某一地区国有工业企业的生产经营情况,则统计总体是(b)。

a、每一个国有工业企业

b、该地区的所有国有工业企业

c、该地区的所有国有工业企业的生产经营情况

d、每一个企业

3、要了解20个学生的学习情况,则总体单位是(c)。

a、20个学生

b、20个学生的学习情况

c、每一个学生

d、每一个学生的学习情况

4、下列各项中属于数量标志的是(b)。

a、性别

b、年龄

c、职称

d、健康状况

5、总体和总体单位不是固定不变的,由于研究目的改变(a)。

a、总体单位有可能变换为总体,总体也有可能变换为总体单位

b、总体只能变换为总体单位,总体单位不能变换为总体

c、总体单位不能变换为总体,总体也不能变换为总体单位

d、任何一对总体和总体单位都可以互相变换

6、以下岗职工为总体,观察下岗职工的性别构成,此时的标志是(c)。

a、男性职工人数

b、女性职工人数

c、下岗职工的性别

d、性别构成

抽样调查

(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。

(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。

(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。

(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。

课后练习

1、抽样成数是一个(a)

a、结构相对数b、比例相对数c、比较相对数d、强度相对数

2、成数和成数方差的关系是(c)

3、整群抽样是对被抽中的群作全面调查,所以整群抽样是(b)

a、全面调查b、非全面调查c、一次性调查d、经常性调查

4、对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95、45%,则优等生比重的极限抽样误差为(a)

a、40%b、4、13%c、9、18%d、8、26%

5、根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(b)

a、甲产品大b、乙产品大c、相等d、无法判断

注意习惯的养成

比如遇到问题基本上不思考就直接寻求帮助、做题时总是心不在焉抠手玩笔、每次检查作业的任务都交给家长完成,这些习惯不仅不容易改正,往往还容易由于家长的原因而愈发严重。对于一个初中生来说,遇到数学问题独立思考、学习时拥有一定的自律能力、能够检查自己犯下的错误这些能力是重要而且必须的,这不仅需要孩子的努力,更需要家长的配合和支持。

高效听课

2、参与交流和互动,不要只是把自己摆在“听”的旁观者,而是“听”的参与者,积极思考老师讲的或提出的问题,能回答的时候积极回答(回答数学问题的好处不仅仅是表现,更多的是可以让你注意力更集中)。

3、听要结合写和思考。纯粹的听很容易懈怠,能记住的点也很少,所以一定要学会快速的整理记忆。

在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

⑸等边三角形:三条边都相等的三角形叫做等边三角形。

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

②对称的图形都全等。

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等。

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

⑶关于坐标轴对称的点的坐标性质

⑷等腰三角形的性质:

①等腰三角形两腰相等。

②等腰三角形两底角相等(等边对等角)。

③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。

④等腰三角形是轴对称图形,对称轴是三线合一(1条)。

⑸等边三角形的性质:

①等边三角形三边都相等。

②等边三角形三个内角都相等,都等于60°

③等边三角形每条边上都存在三线合一。

④等边三角形是轴对称图形,对称轴是三线合一(3条)。

⑴等腰三角形的判定:

①有两条边相等的三角形是等腰三角形。

②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

⑵等边三角形的判定:

①三条边都相等的三角形是等边三角形。

②三个角都相等的三角形是等边三角形。

③有一个角是60°的等腰三角形是等边三角形。

4.基本方法:

⑴做已知直线的垂线:

⑵做已知线段的垂直平分线:

⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。

⑷作已知图形关于某直线的对称图形:

⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。

养成预习的习惯

预习是一个很重要的点,尤其对于基础不好的女生来说,你本来基础就不好了,上课听的话更容易听不懂,这样很影响上课效率。在家提前预习的目的,就是为了先了解学习内容,所谓笨鸟先飞,所以准备工作一定要做好。提前预习好了,这样上课的话更容易懂一点,对知识的理解也更深一点,上课效率高了,做题自然就会了。

抓学习节奏

数学课没有一定的速度是无效学习,慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。

整理数学笔记

准备一本笔记本,把一些重要的公式,基本内容记录下来。不要以为数学只要一直刷题就可以了。连公式都记不住,再怎么刷也是无用的,效率不高,事倍功半!所以要把知识点记录下来,在配上典型例题,就可以熟记知识点,还加强运用,提高效率。

1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

八年级数学一次函数知识结构图篇三

本节课我将一次函数的知识分为概念、图象及其性质和应用三大部分,授课过程中体现在板书设计、知识回顾、例题讲解及练习巩固等环节,让学生对一次函数有一个系统、直观的复习思路。

在复习知识点时,让学生自己联想回顾,变被动为主动学习。例如,在“图象及其性质”环节中,老师不急于提问,而是让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充。这样,使无味的复习课变得活跃一些,增强了学习气氛。

本节课的教学方法主要有讲练结合,自主探究,小组讨论等,教学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力。

本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力。

在处理典型例题、练习中,发现绝大多数学生对于简单题型能自己解答,而一部分学生对综合性、开放性题目有些无从下手,透露出了思维不灵活,应变能力弱等不足。所以要想达到高效高质,必须要分层次教学,让不同水平的学生在同一节课中得到应有的发展,课前必须对每一个环节,每一个题型,每一个学生作充分地细致地研究。

在教学过程中,我发现理论与实践在学生身上很难统一。学生习惯于做纯理论性的问题,而对于实践中蕴含的数学问题即便昌很简单,也发现、挖掘不出。这与枯求的“人人学有价值的数学”相差甚远,而且需要很长的时间来解决。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
最新八年级上册数学一次函数知识结构图通用 文件夹
复制