2023年高考数学必考考点模板
文件格式:DOCX
时间:2023-05-05 00:00:00    小编:梨园长

2023年高考数学必考考点模板

小编:梨园长

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

高考数学必考考点篇一

在高考前一段时间的数学的复习中,应当听从老师的安排,跟随考纲的重点,明确复习的重要目标,查漏补缺,寻求新的提升。下面是小编为大家整理的关于高考前必看数学考点资料内容,欢迎大家来阅读。

空间几何体表面积体积公式:

1、圆柱体:表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)。

2、圆锥体:表面积:πr2+πr[(h2+r2)的]体积:πr2h/3(r为圆锥体低圆半径,h为其高。

3、a—边长,s=6a2,v=a3。

4、长方体a—长,b—宽,c—高s=2(ab+ac+bc)v=abc。

5、棱柱s—h—高v=sh。

6、棱锥s—h—高v=sh/3。

7、s1和s2—上、下h—高v=h[s1+s2+(s1s2)^1/2]/3。

8、s1—上底面积,s2—下底面积,s0—中h—高,v=h(s1+s2+4s0)/6。

9、圆柱r—底半径,h—高,c—底面周长s底—底面积,s侧—,s表—表面积c=2πrs底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h。

10、空心圆柱r—外圆半径,r—内圆半径h—高v=πh(r^2—r^2)。

11、r—底半径h—高v=πr^2h/3。

12、r—上底半径,r—下底半径,h—高v=πh(r2+rr+r2)/313、球r—半径d—直径v=4/3πr^3=πd^3/6。

14、球缺h—球缺高,r—球半径,a—球缺底半径v=πh(3a2+h2)/6=πh2(3r—h)/3。

15、球台r1和r2—球台上、下底半径h—高v=πh[3(r12+r22)+h2]/6。

16、圆环体r—环体半径d—环体直径r—环体截面半径d—环体截面直径v=2π2rr2=π2dd2/4。

17、桶状体d—桶腹直径d—桶底直径h—桶高v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)。

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

一、求动点的轨迹方程的基本步骤。

1.建立适当的坐标系,设出动点m的坐标;

2.写出点m的集合;

3.列出方程=0;

4.化简方程为最简形式;

5.检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

3.相关点法:用动点q的坐标x,y表示相关点p的坐标x0、y0,然后代入点p的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点q轨迹方程,这种求轨迹方程的方法叫做相关点法。

4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

求动点轨迹方程的一般步骤:

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点p(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于x,y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:

①上下底面是相似的平行多边形

②侧面是梯形

③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:

①底面是全等的圆;

②母线与轴平行;

③轴与底面圆的半径垂直;

④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:

①底面是一个圆;

②母线交于圆锥的顶点;

③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:

①上下底面是两个圆;

②侧面母线交于原圆锥的顶点;

③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:

①球的截面是圆;

②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制